RESEARCH PAPER
Influence of wood anisotropy on its mechanical properties in relation to the scale effect
 
More details
Hide details
1
Institute of Agricultural Engineering and Informatics, University of Agriculture in Kraków, Balicka 116B, 30149 Kraków, Poland
 
2
Opole University of Technology, Faculty of Mechanical Engineering, Mikołajczyka 5, 45-271 Opole, Poland
 
3
Department of Machines and Production Biosystems, Faculty of Engineering, Slovak University of Agriculture in Nitra, Hlinku 2, 949 76 Nitra, Slovakia
 
 
Acceptance date: 2019-02-03
 
 
Publication date: 2019-07-18
 
 
Int. Agrophys. 2019, 33(3): 337-345
 
KEYWORDS
TOPICS
ABSTRACT
As a construction material wood is characterized by many advantages: low density, a high degree of strength and stiffness, low thermal and electrical conductivity and chemical durability. However, it is an anisotropic material that contains structural elements of varying stiffness and strength. When moisture levels increase, it is characterized by the variability of its mechanical properties and creep resulting from rheological properties. Therefore, it is important to understand how the mechanical properties of wood vary depending on its heterogeneity, the orientation of the sample in relation to the directions of anisotropy and its natural disadvantages. The research material was obtained from the lumber of pine wood, which on the basis of the four-sided planing process was divided into 2 groups: A, B. The wood was subjected to strength tests specifying for appropriate groups of samples respectively: modulus of elasticity in static bending – group A-B, static bending strength - group A-B. The influence of wood anisotropy on the elasticity and strength properties of wood was demonstrated, this results from the variability of the wood element orientation and load direction in relation to the main directions of anisotropy.
REFERENCES (56)
1.
Aguilera J.M., 2005. Why food microstructure? J. Food Eng., 67, 3-11.
 
2.
Barański J., Chuchała D., Dzurenda L., Muziński T., and Orłowski K., 2013. Determination of moisture content profiles of spruce wood after high temperature process and air drying. Forestry and Wood Technology, 82, 49-56.
 
3.
Barański J., Wierzbowski M., and Konopka A., 2014. The change of mechanical properties of selected wood species after drying process under various conditions. Forestry Wood Technol, 86, 13-17.
 
4.
Bieniasz A., Lachowicz H., Buraczyk W., and Moskalik T., 2017. Technical quality of wood of 35 years old Norway spruce (Picea bies L.H. Karst) growing on experimental plot in the Rogów Forest Experimental Station. Sylwan, 161(10), 851-860.
 
5.
Bodig J. and Jayne B., 1982. Mechanics of Wood and Wood Composites.Van Nostrand Reinhold Company, New York -Cincinnati-Toronto-London-Melbourne.
 
6.
Chuchała D., Orłowski K., and Krzosek S., 2012. The effect of the late wood share upon density of the Polish pine wood as a function of its origin. Forestry and Wood Technol., 77, 118-124.
 
7.
Fojutowski A., Noskowiak A., Kot M., Kropacz A., and Stangierska A., 2010. The assessment of mechanical properties of wood treated with ionic liquids. Drewno: prace naukowe, doniesienia, komunikaty, 53, 184, 21-37.
 
8.
Gancarz M. and Konstankiewicz K., 2007. Changes of cellular structure of potato tuber parenchyma tissues during storage. Res. Agric. Eng., 53, (2), 75-78. https://doi.org/10.17221/2118-....
 
9.
Gancarz M., Konstankiewicz K., Pawlak K., and Zdunek A., 2007. Analysis of plant tissue images obtained by confocal tandem scanning reflected light microscope. Int. Agrophysics, 21, 1, 49-53.
 
10.
Gancarz M., Konstankiewicz K., and Zgórska K., 2014. Cell orientation in potato tuber parenchyma tissue. Int. Agrophys., 28(1), 15-22. https://doi.org/10.2478/intag-....
 
11.
Giefing D.F., 1999. Pruning trees in the forest. Publishing house Agricultural University August Cieszkowski in Poznań, Poznań, Poland.
 
12.
Giefing D.F. and Pazdrowski W., 2012. Deforestation and classification of roundwood. Publisher of the University of Life Sciences. Poznań, 130.
 
13.
Heydari H., Jafari A., Mobli H., Rafee S., and Portahmasi K., 2011. Physical properties of walnut limbs. Int. Agrophys., 25, 197-199.
 
14.
Kollman F.P., 1967. Verformung und Bruchgeschehen bei Holz als einen anisotropen, inhomogenen, porigen Festkörper. VDJ, 520, Berlin.
 
15.
Korkut S. and Guller B., 2008. Physical and mechanical properties of European Hophornbeam (Ostrya carpinifolia Scop.) wood. Bioresource Technol., 99(11), 4780-4785. https://doi.org/10.1016/j.bior....
 
16.
Krotkievič P.G., 1955. Vyraščivanie vysokokačestvennoj drevesiny. Goslesbumizdat, Moskva Kyzioł L. and Czech M., 2011. Influence of the content of the polymer for anisotropy of the wood strength for tensile. Acta Mechanica et Automatica, 5, 1, 24-17.
 
17.
Langrish T.A.G., Keey R.B., Kho P.C.S., and Walker J.C.F., 1993. Time-dependent flow in arrays of timber boards: Flow visualization, mass-transfer measurements and numerical simulation. Chemical Eng. Sci., 48 (12), 2211-2223. https://doi.org/10.1016/0009-2....
 
18.
Langrish T.A.G., Kho P.C.S., and Keey R.B., 1992. Experimental measurements and numerical simulation of local mass-transfer coefficients in timber kilns. Drying Technol., 10, 753-781. https://doi.org/10.1080/073739....
 
19.
Leontev N.L., 1970. Technique test wood. Ed. „Forest Indrusty “, Moscow, Russia.
 
20.
Lionetto F. and Frigione M., 2009. Mechanical and natural durability properties of wood treated with a novel organic preservative/consolidant product. Materials Design, 30(8), 3303-3307. https://doi.org/10.1016/j.matd....
 
21.
Łapka M. and Niesłony A., 2014. Scale effect in strength tests of non-homogeneous material on the example of wood. Zeszyty Naukowe, Mechanika, 103, 129-130.
 
22.
Łapka M. and Sztyber J., 2007. Methodical aspects of pine wood strength testing on shear along fibers. Nationwide Scientific Conf. “Technology and technology in Polish forestry”. A monograph issued on the occasion of the 50th anniversary of the Department of Forest Mechanization, 183, 52-56, SGGW Warsaw, Poland.
 
23.
Madsen B., 1992. Structural Behaviour of Timber. Timber Engineering LTD, North Vancouver, Canada.
 
24.
Malaga-Toboła U., Łapka M., Kurek M., Łukasiewicz M., and Kocira S., 2017. Wood modification methods. Przemysł Chemiczny, 7, DOI:10.15199/62.2017.7.24.
 
25.
Manrique E., Belenguer T., Dotta G., and Montoro T., 1994. Measurement of wood structural features by optical techniques. Int. Agrophysics, 8, 653-660.
 
26.
Mareš V. and Blahovec J., 2004. Variation of the tree ring micro-hardness demonstrated on spruce wood. J. Forest Sci., 50(3): 135-141. https://doi.org/10.17221/4608-....
 
27.
Miller R.B., 1999. Wood handbook – Wood as an engineering material. Forest Products Lab., Wisconsin, USA.
 
28.
Mishnaevsky L. and Qing H., 2008. Micromechanical modeling of mechanical behavior and strength of wood: State – of – the art review. Computational Materials Science, 44. https://doi.org/10.1016/j.comm....
 
29.
Moskaleva V.E., 1957. Structure of wood and its change in physical and mechanical effects. Ed. Acad. Science of the USSR, Moscow Ed. Acad. Science of the USSR, Moscow.
 
30.
Niklas K.J., 1997. Mechanical properties of black locust (Robinia pseudoacacia L.) wood. Size and age-dependent variations in sap- and heartwood. Annals of Botany, 79, 265-272. https://doi.org/10.1006/anbo.1....
 
31.
Noskowiak A., Pajchrowski G., Szumiński G., and Jabłoński L., 2013. Technical characteristics of silver fir Wood (Abies alba Mill.) harvested in the Carpathian natural-forest region. Forestry Wood Technol., 83, 279-282.
 
32.
Noskowiak A., Pajchrowski G., Szumiński G., and Jabłoński L., 2014. Properties of Black polar wood (Populus nigra L.) in terms of structural applications. Forestry Wood Technol., 86, 189-192.
 
33.
Noskowiak A., Pajchrowski G., Szumiński G., and Jabłoński L., 2015. Strength and modulus of elasticity of pine structural round timber. Forestry Wood Technol., 92, 300-306.
 
34.
Obataya E. et al., 2006. Effects of high temperature kiln drying on the practical performances of Japanese cedar wood (Cryptomeria japonica) I: changes in hygroscopicity due to heating”. J. Wood Sci., 52, 33-38, https://doi.org/10.1007/s10086....
 
35.
Obidziński S., 2012. Pelletization process of postproduction plant waste. Int. Agrophys., 26, 279-284. https://doi.org/10.2478/v10247....
 
36.
Pang S., Simpson I.G., and Haslett A.N., 2001. Cooling and steam conditioning after high-temperature drying of Pinus radiate board: experimental investigation and mathematical modeling. Forestry Wood Technol., 35, Springer Verlag, 487-502. https://doi.org/10.1007/s00226....
 
37.
Pazdrowski W. and Spława-Neyman S., 1993. Research on selected properties of Scots pine (Pinus silvestris L.) wood against the background of biological classes in the stand. Folia Forestalia Polonica, Seria B, 24, 133-145.
 
38.
Perełygin L.M., 1957. Drevesinovedenie. Izd. ‘Lesnaja promyšlennost’, Moskva.
 
39.
PN-75/D-04123, 1975. Wood. Determination of the modulus of elasticity in static bending in the zone of pure bending.
 
40.
PN-77/D-04103, 1977. Wood. Determination of static bending strength.
 
41.
PN-EN 408:2004. Wooden constructions. Structural wood solid and glued in layers. Determination of some physical and mechanical properties (on full-size elements).
 
42.
PN-82/D-94021, 1982. Coniferous construction timber sorted by strength methods.
 
43.
PN-EN 13183-1:2004. Moisture of lumber art. Part 1: Determination of moisture by a drying-weight method.
 
44.
PN-77/D-04101, 1977. Wood. Determination of density.
 
45.
PN-63/D-04117, 1963. Physical and mechanical properties of wood. Determination of the elasticity coefficient for static bending.
 
46.
Sándor P., et. al., 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci. Technol., 40(8), 647-663, DOI: 10.1007/s00226-006-0082-9.
 
47.
Sobolev Ju.S., 1979. Wood as a construction material. Ed. „Forest Indrusty “, USSR, Moscow.
 
48.
Stasiak M., Molenda M., Gancarz M., Wiącek J., Parafiniuk P., and Lisowski A., 2018. Characterization of shear be-.
 
49.
haviour in consolidated granular biomass. Powder Technol., 327, 120-127. https://doi.org/10.1016/j.powt....
 
50.
Sun Z. F., Carrington C.G., and Bannister P., 2000. Dynamic modeling of the woodstack in a wood drying kiln. Chemical Eng. Res. Design, Chemical Eng. Res. Design, 78, 107-117. https://doi.org/10.1205/026387....
 
51.
Szyszlak-Bargłowicz J., Zając G., and Piekarski W., 2012. Energy biomass characteristics of chosen plants. Int. Agrophys., 26, 175-179. https://doi.org/10.2478/v10247....
 
52.
Taffe W., 1955. Gütebewertung des Fichtenholzes verschiedener Standorte und Ertagsklassen in Rheinland-Pfalz. Hann. Münden, Germany.
 
53.
Thibaut B., Gril J., and Fournier M., 2001. Mechanics of wood and trees: some new highlights for an old story. Acad Sci. Press, Paris, 329, 701-716.
 
54.
Walczak A., Pieniak D., Oszust M., Blukacz M., and Ogrodnik P., 2014. Comparative study of the effect of scale in the modified wood compression test. Instytut Naukowo-Wydawniczy „SPATIUM”, 15, 5, 122-126.
 
55.
Wierzbowski M., Barański J., and Stąsiek J., 2009. Gas-steam mixture wood drying”. COST E53 Meeting „Quality Control for Wood and Wood Products: EDG Drying Seminar „Improvement of Wood Drying Quality by Conventional and Advanced Drying Techniques”, April 21-23, Bled, Slovenia, https://doi.org/10.1201/978042....
 
56.
Zhong Y., Ren HQ., Lou WL., and Li XZ., 2012. The effect of knots on bending modulus of dimension lumber. 13th Int. Conf. Non – Conventional Materials and Technologies. September 22-24, 2011, Changsha, China.
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top