RESEARCH PAPER
Broccoli pomace: effect of drying methods and temperature on the grinding process and physicochemical properties
 
More details
Hide details
1
Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
 
2
Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University Science and Technology Research and Application Center (DUBTAM), 21280, Diyarbakır, Turkey
 
3
Department of Molecular Biology and Genetics, Faculty of Science and Art, 12000, Bingöl University, Bingöl, Turkey
 
 
Final revision date: 2024-08-22
 
 
Acceptance date: 2024-09-01
 
 
Publication date: 2024-10-21
 
 
Corresponding author
Dariusz Dziki   

Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Poland
 
 
Int. Agrophys. 2024, 38(4): 423-436
 
HIGHLIGHTS
  • Lyophilized broccoli pomace exhibited excellent grindingability.
  • The quinic acid and fumaric acid were dominant in dried pomace
  • Contact drying at 80°C is recommended method for drying broccoli pomace
  • The lyophilized pomace was greener compared to contact-dried pomace
KEYWORDS
TOPICS
ABSTRACT
The objective of this study was to evaluate the impact of different drying methods and temperatures on the physicochemical properties of broccoli pomace. The broccoli juice by-product was subjected to contact-drying at temperatures of 40°C (with microwave assistance at 50 W), 60, and 80°C as well as freeze-drying at hotplate temperatures of 20, 40, and 60°C, and then ground into powders. The drying kinetics of the pomace was assessed, along with measurements of water activity, moisture content, grinding efficiency, and energy consumption of pulverizing. Additional evaluations included powder color coordinates, total polyphenol content (determined using Folin-Ciocalteu reagent), antioxidant activity (measured using DPPH and ABTS assays), and a phytochemical analysis using LC-MS/MS. The results indicated that lyophilized broccoli pomace exhibited superior grindability, compared to contact-dried broccoli pomace. The freeze-dried powders were significantly brighter and greener than those obtained through contact-drying. Contact-drying, including microwave-assisted drying, resulted in increased phenolic compound content and enhanced antiradical activity, in comparison to freeze-drying. The phytochemical analysis revealed the highest concentrations of quinic acid and fumaric acid, along with trace amounts of aconitic acid, protocatechuic acid, piceid, coumarin, and astragalin. Based on the antioxidant properties and total polyphenol content, contact drying at 80°C was identified as the optimal method for drying broccoli pomace.
FUNDING
This research was supported by project no. SD.WTP.24.066 provided by University of Life Sciences in Lublin, Poland.
CONFLICT OF INTEREST
The Authors do not declare any conflict of interest.
REFERENCES (73)
1.
Abano, E.E., Amoah, R.S., Opoku, E.K., 2019. Temperature, microwave power and pomace thickness impact on the drying kinetics and quality of carrot pomace. J. Agric. Eng. 50, 28-37. https://doi.org/10.4081/jae.20....
 
2.
Adamczak, A., Buchwald, W., Kozłowski, J., 2009. Variation in the content of flavonols and main organic acids in the fruit of European cranberry (Oxycoccus palustris Pers.) growing in peatlands of North-Western Poland. Herba Pol. 57, 5-15.
 
3.
Ahmed, J., Thomas, L., Khashawi, R., 2020. Influence of hot-air drying and freeze-drying on functional, rheological, structural and dielectric properties of green banana flour and dispersions. Food Hydrocoll. 99, 105331. https://doi.org/10.1016/j.food....
 
4.
Akpinar, E.K., Bicer, Y., 2005. Modelling of the drying of eggplants in thin-layers. Int. J. Food Sci. Technol. 40, 273-281. https://doi.org/10.1111/j.1365....
 
5.
Benali, T., Bakrim, S., Ghchime, R., Benkhaira, N., El Omari, N., Balahbib, A., et al., 2022. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol. Genet. Eng. Rev. 19, 1-30. https://doi.org/10.1080/026487....
 
6.
Berndtsson, E., Andersson, R., Johansson, E., Olsson, M.E., 2020. Side streams of broccoli leaves: a climate smart and healthy food ingredient. Int. J. Environ. Res. Public Heal. 17, 2406. https://doi.org/10.3390/ijerph....
 
7.
Bogusz, R., Nowacka, M., Rybak, K., Witrowa-Rajchert, D., Gondek, E., 2024. Foam-mat freeze drying of kiwiberry (Actinidia arguta) pulp: drying kinetics, main properties and microstructure. Appl. Sci. 14, 5629. https://doi.org/10.3390/app141....
 
8.
Bucić-Kojić, A., Planinić, M., Tomas, S., Jakobek, L., Šeruga, M., 2009. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int. J. Food Sci. Technol. 44, 2394-2401. https://doi.org/10.1111/j.1365....
 
9.
Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á.A., et al., 2020. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 9, 1261. https://doi.org/10.3390/foods9....
 
10.
Cao, Y., Song, Z., Dong, C., Ni, W., Xin, K., Yu, Q., et al., 2023. Green ultrasound-assisted natural deep eutectic solvent extraction of phenolic compounds from waste broccoli leaves: Optimization, identification, biological activity, and structural characterization. LWT-Food Sci Technol. 190, 115407. https://doi.org/10.1016/j.lwt.....
 
11.
Chabane, F., Moummi, N., Brima, A., 2023. An experimental study and mathematical modeling of solar drying of moisture content of the mint, apricot, and green pepper. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 4697-4711. https://doi.org/10.1080/155670....
 
12.
Costa-Pérez, A., Moreno, D.A., Periago, P.M., García-Viguera, C., Domínguez-Perles, R., 2022. A new food ingredient rich in bioaccessible (poly)phenols (and glucosinolates) obtained from stabilized broccoli stalks. Foods 11, 1734. https://doi.org/10.3390/foods1....
 
13.
de Evan, T., Marcos, C.N., Ranilla, M.J., Carro, M.D., 2020. In vitro and in situ evaluation of broccoli wastes as potential feed for ruminants. Anim. 10, 1989. https://doi.org/10.3390/ani101....
 
14.
Duan, X., Yang, X., Ren, G., Pang, Y., Liu, L., Liu, Y., 2016. Technical aspects in freeze-drying of foods. Dry. Technol. 34, 1271-1285. https://doi.org/10.1080/073739....
 
15.
Dziki, D., Habza-Kowalska, E., Gawlik-Dziki, U., Miś, A., Różyło, R., Krzysiak, Z., et al., 2020a. Drying kinetics, grinding characteristics, and physicochemical properties of broccoli sprouts. Processes 8, 1-11. https://doi.org/10.3390/pr8010....
 
16.
Dziki, D., Hassoon, W.H., Kramek, A., Krajewska, A., 2023. Grinding characteristics of new varieties of winter triticale grain. Processes 11, 1477. https://doi.org/10.3390/pr1105....
 
17.
Dziki, D., Tarasiuk, W., Łysiak, G., Jochymek, P., 2020b. The study of particle size distribution of micronized oat bran layer. Agric. Eng. 24, 45-54. https://doi.org/10.1515/agrice....
 
18.
Fante, L., Noreña, C.P.Z., 2015. Quality of hot air dried and freeze-dried of garlic (Allium sativum L.). J. Food Sci. Technol. 52, 211-220. https://doi.org/10.1007/s13197....
 
19.
Farahmandfar, R., Tirgarian, B., Dehghan, B., Nemati, A., 2020. Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. J. Food Meas. Charact. 14, 862-875. https://doi.org/10.1007/s11694....
 
20.
FAOSTAT, 2024. https://www.fao.org/faostat/en... (accessed 24.05.24).
 
21.
Gasmi, A., Gasmi Benahmed, A., Shanaida, M., Chirumbolo, S., Menzel, A., Anzar, W., et al., 2023. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit. Rev. Food Sci. Nutr. 2, 1-19. https://doi.org/10.1080/104083....
 
22.
Hassoon, W.H., Dziki, D., 2018. The effect of seed moisture and temperature on grinding characteristics of quinoa (Chenopodium quinoa Willd.). BIO Web Conf. 10, 01006. https://doi.org/10.1051/biocon....
 
23.
Henderson, S.M., Pabis, S., 1961. Grain drying theory (I) temperature effect on drying coefficient. J. Agric. Eng. Res. 6, 169-174.
 
24.
Ilica, R.A., Kloetzer, L., Galaction, A.I., Caşcaval, D., 2019. Fumaric acid: production and separation. Biotechnol. Lett. 41, 47-57. https://doi.org/10.1007/s10529....
 
25.
Isa, J., Majasan, O.I., Jimoh, K.A., 2021. Mathematical modelling of the drying characteristics of milled sorghum residue. J. Eng. Res. Reports 21, 1-17. https://doi.org/10.9734/jerr/2....
 
26.
Jiang, G.H., Lee, K.C., Ameer, K., Eun, J.B., 2019. Comparison of freeze-drying and hot air-drying on Asian pear (Pyrus pyrifolia Nakai 'Niitaka') powder: changes in bioaccessibility, antioxidant activity, and bioactive and volatile compounds. J. Food Sci. Technol. 56, 2836-2844. https://doi.org/10.1007/s13197....
 
27.
Kim, G., Choi, H., Park, I., 2017. Effect of maillard reaction products on inhibition of burdock polyphenol oxidase and their antioxidant activities. Korean J. Food Nutr. 30, 853-859.
 
28.
Kohli, D., Singh Champawat, P., Kumar Jain, S., Dayal Mudgal, V., Chand Shahi, N., 2022. Mathematical modelling for drying kinetics of asparagus roots (Asparagus racemosus L.) and determination of energy consumption. Biointerface Res. Appl. Chem. 12, 3572-3589. https://doi.org/10.33263/BRIAC....
 
29.
Kouhila, M., Moussaoui, H., Lamsyehe, H., Tagnamas, Z., Bahammou, Y., Idlimam, A., et al., 2020. Drying characteristics and kinetics solar drying of Mediterranean mussel (Mytilus galloprovincilis) type under forced convection. Renew. Energy 147, 833-844. https://doi.org/10.1016/j.rene....
 
30.
Krajewska, A., Dziki, D., Yilmaz, M.A., Özdemir, F.A., 2024. Physicochemical properties of dried and powdered pear pomace. Molecules 29, 742. https://doi.org/10.3390/molecu....
 
31.
Krupa-Kozak, U., Drabińska, N., Baczek, N., Šimková, K., Starowicz, M., Jeliński, T., 2021. Application of broccoli leaf powder in gluten-free bread: an innovative approach to improve its bioactive potential and technological quality. Foods 10, 819. https://doi.org/10.3390/foods1....
 
32.
Li, Hang, Xia, Y., Liu, H.Y., Guo, H., He, X.Q., Liu, Y., et al., 2022. Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci. Technol. 119, 288-308. https://doi.org/10.1016/j.tifs....
 
33.
Li, R., Shang, H., Wu, H., Wang, M., Duan, M., Yang, J., 2018. Thermal inactivation kinetics and effects of drying methods on the phenolic profile and antioxidant activities of chicory (Cichorium intybus L.) leaves. Sci. Reports 8, 9529. https://doi.org/10.1038/s41598....
 
34.
Lisiecka, K., Wójtowicz, A., 2021. Effect of fresh beetroot application and processing conditions on some quality features of new type of potato-based snacks. LWT-Food Sci Technol. 141, 110919. https://doi.org/10.1016/j.lwt.....
 
35.
Lisiecka, K., Wójtowicz, A., Gancarz, M., 2021. Characteristics of newly developed extruded products supplemented with plants in a form of microwave-expanded snacks. Materials 14, 2791. https://doi.org/10.3390/ma1411....
 
36.
Liu, Haonan, Wu, H., Wang, Y., Wang, F., Liu, X., Zhou, J., 2021. Enhancement on antioxidant and antibacterial activities of Brightwell blueberry by extraction and purification. Appl. Biol. Chem. 64, 1-10. https://doi.org/10.1186/s13765....
 
37.
Liu, Haili, Liu, H., Liu, H., Zhang, X., Hong, Q., Chen, W., et al., 2021. Microwave drying characteristics and drying quality analysis of corn in China. Processes 9, 1511. https://doi.org/10.3390/pr9091....
 
38.
López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., et al., 2010. Effect of air temperature on drying kinetics, vitamin c, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O'Neil. Food Bioprocess Technol. 3, 772-777. https://doi.org/10.1007/s11947....
 
39.
Mahn, A. V., Antoine, P., Reyes, A., 2011. Optimization of drying kinetics and quality parameters of broccoli florets. Int. J. Food Eng. 7, 1-14. https://doi.org/10.2202/1556-3....
 
40.
Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., et al., 2017. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 73, 40-45. https://doi.org/10.1016/j.jcs.....
 
41.
Midilli, A., Kucuk, H., Yapar, Z., 2002. A new model for single-layer drying. Dry. Technol. 20, 1503-1513. https://doi.org/10.1081/DRT-12....
 
42.
Milić, B., Stojanović, S., Vučurević, N., Turčić, M., 1968. Chlorogenic and quinic acids in sunflower meal. J. Sci. Food Agric. 19, 108-113. https://doi.org/10.1002/jsfa.2....
 
43.
Mohd Rozalli, N.H., Chin, N.L., Yusof, Y.A., 2015. Grinding characteristics of Asian originated peanuts (Arachis hypogaea L.) and specific energy consumption during ultra-high speed grinding for natural peanut butter production. J. Food Eng. 152, 1-7. https://doi.org/10.1016/j.jfoo....
 
44.
Motevali, A., Younji, S., Chayjan, R.A., Aghilinategh, N., Banakar, A., 2013. Drying kinetics of dill leaves in a convective dryer. Int. Agrophys. 27, 39-47. https://doi.org/10.2478/v10247....
 
45.
Murata, M., 2021. Browning and pigmentation in food through the Maillard reaction. Glycoconj. J. 38, 283-292. https://doi.org/10.1007/s10719....
 
46.
Nagraj, G.S., Chouksey, A., Jaiswal, S., Jaiswal, A.K., 2020. Broccoli. Nutritional composition and antioxidant properties of fruits and vegetables. Academic Press 5-17. https://doi.org/10.1016/B978-0....
 
47.
Nowak, D., Jakubczyk, E., 2020. The Freeze-drying of foods-the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 9, 1488. https://doi.org/10.3390/foods9....
 
48.
Oyinloye, T.M., Yoon, W.B., 2020. Effect of freeze-drying on quality and grinding process of food produce: a review. Processes 8, 354. https://doi.org/10.3390/pr8030....
 
49.
Page, G.E., 1949. Factors influencing the maximum rates of air drying shelled corn in thin layers. Theses Diss. M.Sc. Thesis, Purdue University, West Lafayette, Indiana.
 
50.
Pandurangappa, T., Murthy, K., Manohar, B., 2013. Grinding studies of mango ginger: mathematical modelling of particle size distribution and energy consumption. Am. J. Food Sci. Technol. 1, 70-76.
 
51.
Pei, F., Shi, Y., Mariga, A.M., Yang, W. Jian, Tang, X. Zhi, Zhao, L. Yan, et al., 2014. Comparison of freeze-drying and freeze-drying combined with microwave vacuum drying methods on drying kinetics and rehydration characteristics of button mushroom (Agaricus bisporus) slices. Food Bioprocess Technol. 7, 1629-1639. https://doi.org/10.1007/s11947....
 
52.
Petikirige, J., Karim, A., Millar, G., 2022. Effect of drying techniques on quality and sensory properties of tropical fruits. Int. J. Food Sci. Technol. 57, 6963-6979. https://doi.org/10.1111/ijfs.1....
 
53.
Petkowicz, C.L.O., Williams, P.A., 2020. Pectins from food waste: characterization and functional properties of a pectin extracted from broccoli stalk. Food Hydrocoll. 107, 105930. https://doi.org/10.1016/j.food....
 
54.
Que, F., Mao, L., Fang, X., Wu, T., 2008. Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. Int. J. Food Sci. Technol. 43, 1195-1201. https://doi.org/10.1111/j.1365....
 
55.
Quintero-Herrera, S., García-León, A.M., Botello-Álvarez, J.E., Estrada-Baltazar, A., Abel-Seabra, J.E., Padilla-Rivera, A., et al., 2021. The use of broccoli agro-industrial waste in dairy cattle diet for environmental mitigation. Clean. Environ. Syst. 2, 100035. https://doi.org/10.1016/j.cesy....
 
56.
Roselló-Soto, E., Martí-Quijal, F.J., Cilla, A., Munekata, P.E.S., Lorenzo, J.M., Remize, F., et al., 2019. Influence of temperature, solvent and pH on the selective extraction of phenolic compounds from tiger nuts by-products: Triple-TOF-LC-MS-MS characterization. Molecules 24, 797. https://doi.org/10.3390/molecu....
 
57.
Ross, K.A., DeLury, N., Fukumoto, L., Diarra, M.S., 2020. Dried berry pomace as a source of high value-added bioproduct: drying kinetics and bioactive quality indices. Int. J. Food Prop. 23, 2123-2143. https://doi.org/10.1080/109429....
 
58.
Rubio-Senent, F., Rodríguez-Gutiérrez, G., Lama-Muñoz, A., Fernández-Bolaños, J., 2013. Phenolic extract obtained from team-treated olive oil waste: Characterization and antioxidant activity. Food Sci. Technol. Int. 54, 114-124. https://doi.org/10.1016/j.lwt.....
 
59.
Rudy S., 2009. Energy consumption in the freeze - and convection-drying of garlic. TEKA Kom. Mot. Energ. Roln. – OL PAN 9, 259-266.
 
60.
Salas-Millán, J.Á., Aznar, A., Conesa, E., Conesa-Bueno, A., Aguayo, E., 2022. Functional food obtained from fermentation of broccoli by-products (stalk): metagenomics profile and glucosinolate and phenolic compounds characterization by LC-ESI-QqQ-MS/MS. Food Sci. Technol. Int. 169, 113915. https://doi.org/10.1016/j.lwt.....
 
61.
Sánchez-Vega, R., Garde-Cerdán, T., Rodríguez-Roque, M.J., Elez-Martínez, P., Martín-Belloso, O., 2020. High-intensity pulsed electric fields or thermal treatment of broccoli juice: the effects of processing on minerals and free amino acids. Eur. Food Res. Technol. 246, 539-548. https://doi.org/10.1007/s00217....
 
62.
Shi, M., Hlaing, M.M., Ying, D.Y., Ye, J.H., Sanguansri, L., Augustin, M.A., 2019. New food ingredients from broccoli by-products: physical, chemical and technological properties. Int. J. Food Sci. Technol. 54, 1423-1432. https://doi.org/10.1111/ijfs.1....
 
63.
Srividya Nayak, C.M., 2015. In vitro anti-inflammatory activity of some wild fruits of Karnataka. Int. Conf. Biol. Environ. Food Eng., Singapore, 48-50.
 
64.
Taghinezhad, E., Kaveh, M., Szumny, A., Figiel, A., Blasco, J., 2023. Qualitative, energy and environmental aspects of microwave drying of pre-treated apple slices. Sci. Reports 13, 1-19. https://doi.org/10.1038/s41598....
 
65.
Tepe, T.K., Tepe, B., 2020. The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices. Heat Mass Transf. 56, 3047-3057. https://doi.org/10.1007/s00231....
 
66.
Vargas, L., Kapoor, R., Nemzer, B., Feng, H., 2022. Application of different drying methods for evaluation of phytochemical content and physical properties of broccoli, kale, and spinach. LWT-Food Sci Technol. 155, 112892. https://doi.org/10.1016/j.lwt.....
 
67.
Wang, C., Singh, R., 1978. Use of variable equilibrium moisture content in modeling rice drying. Agric. Food Sci. 11, 668-672.
 
68.
Wu, X. Fei, Zhang, M., Bhandari, B., 2019. A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innov. Food Sci. Emerg. Technol. 54, 34-42. https://doi.org/10.1016/j.ifse....
 
69.
Yang, X., Zhang, Y., Kong, Y., Zhao, J., Sun, Y., Huang, M., 2019. Comparative analysis of taste compounds in shiitake mushrooms processed by hot-air drying and freeze drying. Int. J. Food Prop. 22, 1100-1111. https://doi.org/10.1080/109429....
 
70.
Yap, J.Y., Hii, C.L., Ong, S.P., Lim, K.H., Abas, F., Pin, K.Y., 2020. Effects of drying on total polyphenols content and antioxidant properties of Carica papaya leaves. J. Sci. Food Agric. 100, 2932-2937. https://doi.org/10.1002/jsfa.1....
 
71.
Yilmaz, M.A., 2020. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: a detailed, robust and comprehensive LC-MS/MS method validation. Ind. Crops Prod. 149, 112347. https://doi.org/10.1016/j.indc....
 
72.
Zhang, J., Li, M., Li, C., Liu, Y., 2019. Effect of wheat bran insoluble dietary fiber with different particle size on the texture properties, protein secondary structure, and microstructure of noodles. Grain Oil Sci. Technol. 2, 97-102. https://doi.org/10.1016/j.gaos....
 
73.
Zhang, L., Zhang, C., Wei, Z., Huang, W., Yan, Z., Luo, Z., et al., 2023. Effects of four drying methods on the quality, antioxidant activity and anthocyanin components of blueberry pomace. Food Prod. Process. Nutr. 5, 1-14. https://doi.org/10.1186/s43014....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top