RESEARCH PAPER
Considering different water supplies can improve the accuracyof the WOFOST crop model and remote sensing assimilation in predicting wheat yield
More details
Hide details
1
College of Information and Management Science, Henan Agricultural University, China
2
College of Agronomy, Henan Agricultural University, China
Final revision date: 2022-07-10
Acceptance date: 2022-09-23
Publication date: 2022-11-17
Corresponding author
Xinming Ma
College of Information and Management Science, Henan Agricultural University, China
Int. Agrophys. 2022, 36(4): 337-349
HIGHLIGHTS
- Different water supplies affect remote sensing and crop model assimilation.
- Calibration of the WOFOST model should consider different water conditions.
- Crop model and remote sensing data assimilation should be regional assimilation.
KEYWORDS
TOPICS
ABSTRACT
To clarify the effects of different water and irrigation conditions on crop models and remote sensing assimilation results. This study took winter wheat from 17 test sites in Henan Province as the research object and calibrated the WOFOST model. The ensemble Kalman filter algorithm was used to calibrate the two modes and MODIS-LAI of the calibrated WOFOST model. The study found that the average error of the WOFOST model for simulating the flowering and maturity periods is within 2 days, the R2 of the leaf area index calibration results is between 0.87-0.98, and the R2 and RMSE of the verification results are 0.77 respectively and 1.06; Under the latent model, the R2 of the WOFOST model considering the water supply situation and the assimilation results without considering the water supply situation are 0.50 and 0.48, respectively. In the water restriction mode, the R2 increased from 0.79 to 0.86 compared with the assimilation results without considering the water supply. The results show that: according to the water supply of different regions, selecting the corresponding assimilation parameters can effectively improve the prediction accuracy of crop models and remote sensing assimilation for wheat yield under different water and irrigation conditions.
ACKNOWLEDGEMENTS
The authors would like to thank the graduate students at the College of Information and Management Science and the College of Agronomy at Henan Agricultural University for their continued support of this research.
FUNDING
This work was funded by the 13th Five-year National Key Research and Development Plan of China (Grant No. 2016YFD0300609; 2016-2020), the Outstanding Science and Technology Innovation Talents Programme of Henan province (Grant No. 184200510008; 2018-2019), the Modern Agricultural Technology System Project of Henan Province (Grant No. S2010-01-G04; 2010-2022).
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
REFERENCES (54)
1.
Bai J., Chen X., Dobermann A., Yang H., and Cassman K.G., Zhang F., 2010. Evaluation of nasa satellite and model-derived weather data for simulation of maize yield potential in China. Agron. J., 102(1), 9-16,
https://doi.org/10.2134/agronj....
2.
Bai T., Wang S., Meng W., Zhang N., Wang T., Chen Y., and Mercatoris B., 2019. Assimilation of remotely-sensed lai into wofost model with the subplex algorithm for improving the field-scale jujube yield forecasts. Remote Sens., 11(16), 1945,
https://doi.org/10.3390/rs1116....
3.
Charney J., Halem M., and Jastrow R., 1969. Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci., 26(5), 1160-1163,
https://doi.org/10.1175/1520-0...<1160:UOIHDT>2.0.CO;2
4.
Chen J., Jönsson P., Tamura M., Gu Z., Matsushita B., and Eklundh L., 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ., 91(3-4), 332-344,
https://doi.org/10.1016/j.rse.....
5.
Curnel Y., De Wit A.J.W., Duveiller G., and Defournyc P., 2011. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment. Agric. For. Meteorol., 151(12), 1843-1855,
https://doi.org/10.1016/j.agrf....
6.
Dente L., Satalino G., Mattia F., and Rinaldib M., 2008. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sens. Environ., 112(4), 1395-1407,
https://doi.org/10.1016/j.rse.....
7.
De Wit A., Boogaard H., Fumagalli D., Janssen S., Knapen R., van Kraalingen D., Supit I., van der Wijngaart R., and van Diepen K., 2019. 25 years of the WOFOST cropping systems model. Agric Sys., 168, 154-167,
https://doi.org/10.1016/j.agsy....
8.
De Wit A., Duveiller G., and Defourny P., 2012. Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations. Agric. For. Meteorol., 164, 39-52,
https://doi.org/10.1016/j.agrf....
9.
De Wit A.J.W. and van Diepen C.A., 2007. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agric. Forest Meteorol., 146(1-2), 0-56,
https://doi.org/10.1016/j.agrf....
10.
Dorigo W.A., Zurita-Milla R., De Wit A.J.W., Brazile J., Singh R., and Schaepman M.E., 2007. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf., 9(2), 165-193,
https://doi.org/10.1016/j.jag.....
11.
Flénet F., Kiniry J.R., Board J.E., Westgate M.E., and Reicosky D.C., 1996. Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower. Agron. J., 88(2), 185-190,
https://doi.org/10.2134/agronj....
12.
He Y., Guo S., and Wang Z., 2019. Research progress of trade-off relationships of plant functional traits. Chin. J. Plant Ecol., 43(12), 5-19,
https://doi.org/10.17521/cjpe.....
13.
Hossain A. and Teixeira da Silva J.A., 2012. Phenology, growth and yield of three wheat (Triticum aestivum L.) varieties as affected by high temperature stress. Not. Sci. Biol., 4(3), 97-109,
https://doi.org/10.15835/nsb43....
14.
Houborg R., Fisher J.B., and Skidmore A.K., 2015. Advances in remote sensing of vegetation function and traits. Int. J. Appl. Earth Obs. Geoinf., 43, 1-6,
https://doi.org/10.1016/j.jag.....
15.
Huang J., Huang H., Ma H., Zhuo W., Ran H., Gao X., Liu J., Su W., Li L., Zhang X., and Zhu D., 2018. Review on data assimilation of remote sensing and crop growth models. Trans. Chin. Soc. Agric. Eng., 34(21), 144-156,
https://doi.org/10.11975/j.iss....
16.
Huang J., Ma H., Sedano F., Lewis P., Liang S., Wu Q., Su W., Zhang X., and Zhu D., 2019. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model. Eur. J. Agron., 102, 1-13,
https://doi.org/10.1016/j.eja.....
17.
Huang J., Wu S., Liu X., Ma G., Ma H., Wu W., and Zou J., 2012. Regional winter wheat yield forecasting based on assimilation of remote sensing data and crop growth model with Ensemble Kalman method. Trans. Chin. Soc. Agric. Eng., 28(4), 142-148,
https://doi.org/10.3969/j.issn....
18.
Huang J.X., Sedano F., Huang Y.B., Ma H., Li X., Liang S., Tian L., Zhang X., Fan J., and Wu W., 2016. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol., 216, 188-202,
https://doi.org/10.1016/j.agrf....
19.
Huang J.X., Tian L.Y., Liang S.L., Ma H., Becker-Reshef I., Huang Y., Su W., Zhang X., Zhu D., and Wu W., 2015. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol., 204, 106-121,
https://doi.org/10.1016/j.agrf....
20.
Jiang Z., Chen Z., Jin C., Liu J., Ren J., Li Z., Sun L., and Li H.., 2017. Application of crop model data assimilation with a particle filter for estimating regional winter wheat yields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7(11), 4422-4431,
https://doi.org/10.1109/JSTARS....
21.
Jin H.A., Li A.N., Wang J.D., and Bo Y., 2016. Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data. Eur. J. Agron., 78, 1-12,
https://doi.org/10.1016/j.eja.....
22.
Jin M., Liu X.N., Wu L., and Liu M., 2015. An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice. Int. J. Appl. Earth Obs. Geoinf., 41, 118-129,
https://doi.org/10.1016/j.jag.....
23.
Jin X., Kumar L., Li Z., Feng H., Xu X., Yang G., and Wang J., 2018. A review of data assimilation of remote sensing and crop models. Eur. J. Agron., 92, 141-152,
https://doi.org/10.1016/j.eja.....
24.
Lipper L., Thornton P., Campbell B.M. et al., 2014. Climate-smart agriculture for food security. Nat. Clim. Change, 4(12), 1068-1072,
https://doi.org/10.1038/nclima....
25.
Li R., Li C.-J., Dong Y.-Y., Liu F., Wang J.-J., Yang X.-D., and Pan Y.-C., 2011. Assimilation of remote sensing and crop model for LAI estimation based on Ensemble Kaiman Filter. Agric. Sci. China, 10(10), 1595-1602,
https://doi.org/10.1016/S1671-....
26.
Liu J., Liu Z., Zhu A.X., Shen F., Lei Q., and Duan Z., 2019. Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Sci. Total. Environ., 651(1), 953-968,
https://doi.org/10.1016/j.scit....
27.
Li Z., Wang J., Xu X., Zhao C., Jin X., Yang G., and Feng H., 2015. Assimilation of two variables derived from hyperspectral data into the DSSAT-CERES model for grain yield and quality estimation. Remote Sens., 7(9), 12400-12418,
https://doi.org/10.3390/rs7091....
28.
Ma G., Huang J., Wu W., Fan J., Zou J., and Wu S., 2013. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Math. Comput. Model., 58(3-4), 634-643,
https://doi.org/10.1016/j.mcm.....
29.
Ma H., Huang J., Zhu D., Liu J., Su W., Zhang C., and Fan J., 2013. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman Filter. Math. Comput. Model., 58(3-4), 759-770,
https://doi.org/10.1016/j.mcm.....
30.
Mcmaster G., Edmunds D.A., Marquez R. et al., 2019. Winter wheat phenology simulations improve when adding responses to water stress. Agron. J., 111(5), 2357-2370,
https://doi.org/10.2134/agronj....
31.
Meziane D. and Shipley B., 2002. Interacting components of interspecific relative growth rate: Constancy and change under differing conditions of light and nutrient supply. Funct. Ecol., 13(5), 611-622,
https://doi.org/10.1046/j.1365....
32.
Morell F.J., Yang H.S., Cassman K.G. et al., 2016. Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt? Field Crops Res., 192, 1-12,
https://doi.org/10.1016/j.fcr.....
33.
Pan H., Chen Z., de Wit A., and Ren J., 2019. Joint assimilation of leaf area index and soil moisture from Sentinel-1 and Sentinel-2 data into the WOFOST model for winter wheat yield estimation. Sensors (Basel), 19(14), 1-17,
https://doi.org/10.3390/s19143....
34.
Ramirez-Villegas J., Koehler A.K., and Challinor A.J., 2017. Assessing uncertainty and complexity in regional-scale crop model simulations. Eur. J. Agron., 88, 84-95,
https://doi.org/10.1016/j.eja.....
35.
Rasche L. and Taylor R., 2019. EPIC-GILSYM: Modelling crop-pest insect interactions and management with a novel coupled crop-insect model. J. Appl. Ecol., 56(8), 2045-2056,
https://doi.org/10.1111/1365-2....
36.
Roth M., Hendeby G., Fritsche C., and Gustafsson F., 2017. The Ensemble Kalman filter: a signal processing perspective. EURASIP J. Adv. Signal Process., 56(1), 1-16,
https://doi.org/10.1186/s13634....
37.
Rowan T.H., 1990. Functional stability analysis of numerical algorithms. USA; University of Texas.
38.
Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., and Tarantola S., 2008. Global sensitivity analysis. The primer. John Wiley & Sons, Ltd,
https://doi.org/10.1002/978047....
39.
Saxton K.E. and Rawls W.J., 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J., 70(5), 1569-1578,
https://doi.org/10.2136/sssaj2....
40.
Shangguan W., Dai Y.J., Liu B.Y. et al., 2013. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst., 5(2), 212-224,
https://doi.org/10.1002/jame.2....
41.
Shen S., Yang S., Li B., Tan B.X., Li Z.Y., and Toan T.L., 2009. A scheme for regional rice yield estimation using ENVISAT ASAR data. Science in China Series D: Earth Sciences, 2009, 52(8), 1183-1194,
https://doi.org/10.1007/s11430....
42.
Singh U. and Wilkens P.W., 2000. Simulating nutrient stress effects on phenological development in maize. CIMMYT NRG-GIS Series, 11-14.
43.
Tang X., Song N., Chen Z., Wang J., and He J., 2018. Estimating the potential yield and ETc of winter wheat across Huang-Huai-Hai Plain in the future with the modified DSSAT model. Sci. Rep., 8(1), 15370,
https://doi.org/10.1038/s41598....
44.
Vanli O., Ustundag B.B., Ahmad I., Hernandez-Ochoa I.M., and Hoogenboom G., 2019. Using crop modeling to evaluate the impacts of climate change on wheat in southeastern Turkey. Environ. Sci. Pollut. Res. Int., 26(28), 29397-29408,
https://doi.org/10.1007/s11356....
45.
Wang E., Martre P., Zhao Z. et al., 2017. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants, 3, 17102,
https://doi.org/10.1038/nplant....
46.
Wang W.M., Li Z.L., and Su H.B., 2007. Comparison of leaf angle distribution functions. Effects on extinction coefficient and fraction of sunlit foliage. Agric. For. Meteorol., 143(1-2), 106-122,
https://doi.org/10.1016/j.agrf....
47.
Weiss M., Jacob F., and Duveiller G., 2020. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ., 236, 111402,
https://doi.org/10.1016/j.rse.....
48.
Wiegand C., Richardson A., and Kanemasu E., 1979. Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling. Agron. J., 71(2), 336-342,
https://doi.org/10.2134/agronj....
49.
Wu S., Peng Y., Ren J., Chen Z., and Li H., 2021. Regional winter wheat yield estimation based on the WOFOST model and a novel VW-4DEnSRF assimilation algorithm. Remote Sens. Environ., 255, 112276,
https://doi.org/10.1016/j.rse.....
50.
Xing H., Li Z., Xu X., Feng H., Yang G., and Chen Z., 2017. Multi-assimilation methods based on Aqua Crop model and remote sensing data (in Chinese). Trans. Chin. Soc. Agric. Eng., 33(13), 183-192,
https://doi.org/10.11975/j.iss....
51.
Xu W., Jiang H., and Huang J., 2011. Regional crop yield assessment by combination of a Crop Growth model and phenology information derived from MODIS. Sensor Lett, 9(3), 981-989,
https://doi.org/10.1166/sl.201....
52.
Xu X., Shen S., Xiong S., Ma X., Fan Z., and Han H., 2021. Water stress is a key factor influencing the parameter sensitivity of the WOFOST model in different agro-meteorological conditions. Int. J. Plant Prod., 15(2), 231-242,
https://doi.org/10.1007/s42106....
53.
Yin X., Kurt-Christian K., Nicolas B. et al., 2020. Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models. Field Crops Res., 255, 107863,
https://doi.org/10.1016/j.fcr.....
54.
Zhang D., Li R., Batchelor W.D., Ju H., and Li Y., 2018. Evaluation of limited irrigation strategies to improve water use efficiency and wheat yield in the North China Plain. PLoS ONE, 13(1), 1-16,
https://doi.org/10.1371/journa....