RESEARCH PAPER
Determination of the influence of biostimulants on soil properties and field crop yields
More details
Hide details
1
Department of Biosystems Engineering, Slovak University of Agriculture Nitra, Tr. A. Hlinku 2, 949-76 Nitra, Slovak Republic
2
Department of Agricultural Machinery and Services, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
3
Biopratex, Department of Agrotechnics, Zahradní 400/1, Czech Republic
4
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
5
Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
6
Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland
Final revision date: 2022-10-14
Acceptance date: 2022-10-21
Publication date: 2022-12-05
Corresponding author
Marek Gancarz
Faculty of Production and Power Engineering, University of Agriculture in Krakow, Poland
Int. Agrophys. 2022, 36(4): 351-359
HIGHLIGHTS
- Biostimulats improve soil physical properties
- Oxidable carbon content was incresed by biostimulants
- Biostimulants increased winter rape yield the most
KEYWORDS
TOPICS
ABSTRACT
There are increasing demands to increase the productivity of crops grown in unfavourable soil conditions. The objective of this study was to evaluate the potential of biostimulants to improve soil properties and crop yields. A field experiment was conducted to assess the impact of Neosol (a soil activator), biostimulant Explorer (a rhizosphere activator) and AKEO (mineral fertilizer activator, Olmix Group) on soil in terms of the yields of spring and winter wheat and winter rape. Numerous soil characteristics related to soil structure were evaluated at the 0-20 and 20-40 cm depth ranges e.g. bulk density, soil porosity, structural coefficient. The results show that the application of biostimulants has a positive effect on soil bulk density, porosity and the structural coefficient. The biostimulants had a positive effect on the yields of crops.
FUNDING
This work is the result of the implementation of the following projects: “Scientific support for climate change adaptation in agriculture and the mitigation of soil degradation” (ITMS2014+ 313011W580) it was supported by the Integrated Infrastructure Operational Programme funded by the ERDF (2020-2023); and VEGA 1/0102/21 (2021-2023); Reducing chemical loads and the degradation of agricultural and forestry soils by selecting the appropriate agri-technology with regard to climate change and KEGA 016SPU-4/2021 (2021-2023). The implementation of modern educational approaches and tools in order to enhance creativity and the practical skills of graduates with a special focus on the application of agricultural and forestry science.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest regarding the publication of this paper.
REFERENCES (49)
1.
Arshad M.A. and Coen G.M., 1992. Characterization of soil quality: Physical and chemical criteria. Am. J. Alternative Agric., 7(1/2), 25-31.
2.
Bartlová J., Badalíková B., Pospíšilová L., Pokorný E., and Šarapatka B., 2015. Water stability of soil aggregates in different systems of tillage. Soil Water Res., 10, 147-154. DOI:10.17221/132/2014-SWR.
3.
Bhandari K.B., West Ch.P., Acosta-Martinez V., Cotton J., and Cano A., 2018. Soil health indicators as affected by diverse forage species and mixtures in semi-arid pastures. Applied Soil Ecol., 132, 179-186, ISSN 0929-1393. DOI:org/10.1016/j.apsoil.2018.09.002
4.
Bhandari K.B., West Ch.P., and Acosta-Martinez V., 2020. Assessing the role of interseeding alfalfa into grass on improving pasture soil health in semi-arid. Texas High Plains. Applied Soil Ecol., 147, DOI:org/10.1016/j.apsoil.2019.103399.
5.
Calvo P., Nelson L., and Kloepper J., 2014. Agricultural uses of plant biostimulants. Plant Soil, 383, 3-41, DOI: org/10.1007/s11104-014-2131-8.
6.
Caradonia F., Battaglia V., Righl L., Pascali G., and La Torre A., 2019. Plant biostimulant regulatory framework: Prospects in Europe and Current Situation at International Level. J. Plant Growth Regulation, 38(2), 438-448.
7.
Du Jardin P., 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Hortic., 196, 3-14. DOI: org/10.1016/j.scienta.2015.09.021.
8.
EBIC (The European Biostimulants Industry Council), 2020. What are biostimulants?
http://www. biostimulants.eu/about/what-are-biostimulants.
9.
Farhadi-Machekposhti M., Valdes J., Pla C., Benavente D., and Pachepsky Y., 2020. Impact of marble powder amendment on hydraulic properties of a sandy soil. Int. Agrophys., 34(2), 223-232.
https://doi.org/10.31545/intag....
10.
Farahani E., Emami H., and Keshavarz P., 2022. Impacts of soil organic carbon and tillage systems on structural stability as quantified by the high energy moisture characteristic (HEMC) method. Int. Agrophys., 36(1),13-26,
https://doi.org/10.31545/intag....
11.
Fei H., Crouse M., Papadopoulos Y.A., and Vessey J.K., 2020. Improving biomass yield of giant Miscanthus by application of beneficial soil microbes and a plant biostimulant. Canadian J. Plant Sci., 100(1), 29-39. DOI: org/10.1139/cjps-2019-0012.
12.
Flint A.L. and Flint L.E., 2002a. Particle density. In: Methods of Soil Analysis: Part 4 Physical Methods (Eds J.H. Dane, C.G. Topp). Madison, Soil Sci. Soc. America, Inc., 229-240.
13.
Flint L.E. and Flint A.L., 2002b. Porosity. In: Methods of Soil Analysis: Part 4 Physical Methods (Eds J.H. Dane, C.G. Topp). Madison, Soil Sci. Soc. Am., Inc., 241-254.
14.
Folegatti M.V., Camponez do Brasil R.P., and Blanco F.F., 2001. Sampling equipment for soil bulk density determination tested in a Kandiudalfic Eutrudox and a Typic Hapludox. Scientia Agricola, 58(4), 833-838. doi:10.1590/S0103-90162001000400027.
15.
Gobin A., 2012. Impact of heat and drought stress on arable crop production in Belgium. Natural Hazards and Earth System Sci., 12(6), 1911-1922. DOI: org/10.5194/nhess-12-1911-2012.
16.
Hábová M., Pospíšilová L., Novotná J., Badalíková B., and Jurica L,. 2016. Haplic chernozem properties as affected by different tillage systems. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(1), 63-69. DOI:10.11118/actaun201664010063.
17.
Hellequin E., Monard C., Quaiser A., Henriot M., Klarzynski O., and Binet F., 2018. Specific recruitment of soil bacteria and fungi decomposers following a biostimulant application increased crop residues mineralization. Plos One, 13(12). DOI:org/10.1371/journal.pone.0209089.
18.
Hůla J., Procházková B., Badalíková B., Dryšlová T, Dvořáček I., Kovaříček P., and Kroulík M., 2010. Impact of non-traditional technologies of soil treatment on soil environment. VÚZT, v.v.i.,
http://www.vuzt.cz/svt/vuzt/pu....
19.
Jakšík O., Kodesova R., Kubis A., Stehlikova I., Drabek O., and Kapicka A., 2015. Soil aggregate stability within morphologically diverse areas. Catena, 127, 287-299. DOI: 10.1016/j.catena.2015.01.010.
20.
Jandák J., Pokorný E., Hybler V., and Pospíšilová L., 2015. Practice of Soil Science (in Czech). Brno, Mendel University.
21.
Jaša S., Badalíková B., and Červinka J., 2019. Influence of Digestate on Physical Properties of Soil in ZD Budišov. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(1), 75-83. DOI: 10.11118/actaun201967010075.
22.
Kałużewicz A., Krzesiński W., Spiżewski T., and Zaworska A., 2017. Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45, 197-202. DOI: org/10.15835/nbha45110529.
23.
Kapela K., Sikorska A., Niewęgłowski M., Krasnodębska E., Zarzecka K., and Gugała M., 2020. The impact of nitrogen fertilization and the use of biostimulants on the yield of two maize varieties (Zea mays L.) cultivated for grain. Agronomy, 10,(9), 1408. DOI: org/10.3390/agronomy10091408.
24.
Katerji N., Van Hoorn J.W., Hamdy A., and Mastrorilli M., 2004. Comparison of corn yield response to plant water stress caused by salinity and by drought. Agric. Water Manag., 65(2), 95-101.
25.
Kononová M.M., and Bělčiková N.P., 1963. Direct method for determining humus content in mineral soils. In: Organic soil fertilization (in Russian). MGU, Moskva, 228-234.
26.
Kosolapova A., Yamaltdinova V., Mitrofanova E., Fomin D., and Teterlev I., 2016. Biological Activity of Soil Depending on Fertilizer Systems. Bulgarian J. Agric. Sci., 22(6), 921-926.
27.
Kubaczyński A., Walkiewicz A., Pytlak A., and Brzezińska M., 2020. New biochars from raspberry and potato stems absorb more methane than wood offcuts and sunflower husk biochars. Int. Agrophys., 34(3), 355-364.
https://doi.org/10.31545/intag....
28.
Legros J.P., Argillier J.P., Callot G., Carbonneau A., and Champagnol F., 1998. Les Sols Viticoles du Languedoc: un e´tat pre´occupant. Progrès Agricole et Viticole, 115(1), 296-298.
29.
Lhotsky J., 2000. Soil compaction and its measurement. Study report. UZPI Prague, pp.61.
30.
Luan C., He W., Su X., Wang X., Bai Y., and Wang L., 2021. Effects of biochar on soil water and temperature, nutrients, and yield of maize/soybean and maize/peanut intercropping systems. Int. Agrophys., 35(4), 365-373.
https://doi.org/10.31545/intag....
31.
Makó A., Barna G., and Horel Á., 2020. Soil physical properties affected by biochar addition at different plant phaenological phases. Part II. Int. Agrophys., 34(1), 1-7.
https://doi. org/10.31545/intagr/115285.
32.
Miller R.H., 2000. Soil microbiological inputs for sustainable agricultural systems. In: Sustainable Agricultural Systems (Eds C.A. Edwards, R. Lal, P. Madden, R.H. Miller, G. House). Soil Water Conservation Society, 614-623.
33.
Mitchell-Forsytk B., Haruna S., and Downs K., 2021. Variability of soil thermal properties along a catena in Middle Tennessee, USA. Int. Agrophys., 35(2), 209-219.
https://doi.org/10.31545/intag....
34.
Nelson D.W. and Sommers L.E., 1982. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis (Eds A.L. Page, R.H. Miller, D.R. Keeney). Part 2. ASA, SSSA Publ.; Madison, Wisconsin.
35.
Němeček J., 2011. Taxonomic classification system of soils Czech Republic. Prague, Czech University of Agriculture.
36.
Nimmo J.R., 2013. Reference Module in Earth Systems and Environmental Sciences. Elsevier, DOI:10.1016/B978-0-12-409548-9.05087-9.
37.
Osman KT., 2013. Soils: Principles, Properties and Management. Springer, DOI: 10.1007/978-94-007-5663-2_5.
38.
Peña-Gallardo M., Vicente-Serrano S.M., Quiring S., Svoboda M., Hannaford J., Tomas-Burguera M., Martín-Hernández N., Domínguez-Castro F., and El Kenawy A., 2019. Response of crop yield to different time scales of drought in the united states: Spatio-temporal patterns and climatic and environmental drivers. Agric. Forest Meteorol., 264, 40-55. DOI: 10.1016/j.agrformet.2018.09.019.
39.
Renne R.R., Schlaepfer D.R., Palmquist K.A., Bradford J.B., Burke I.C., and Lauenroth W.K., 2019. Soil and stand structure explain shrub mortality patterns following global change-type drought and extreme precipitation. Ecology, 100(12), 1-17.
40.
Šimečková J., Jandák J., and Slimařík D., 2016. Changes in selected soil properties depending on the applied fertilizer. J. Int. Scientific Publications, 4, 673-680.
41.
Šindelková I., Badalíková B., and Kubíková Z., 2019. The soil biostimulant usage effect on soil properties in dry area. Proc. 19th Int. Multidisciplinary Scientific GeoConf. SGEM 2019. Soils, Forst ecosystems. Albena, Bulgaria, 3.2, 561-568. DOI:10.5593/sgem2019/3.2/S13.073.
42.
Tretowski J. and Wójcik R., 1991. Methodology of Agricultural Experiments (in Polish). University of Agriculture and Pedagogy, Siedlce, Poland, 331-334.
43.
Vandenkoornhuyse P., Quaiser A., Duhamel M., Le Van A., and Dufresne A., 2015. The importance of the microbiome of the plant holobiont. New Phytologist, 206, 1196-1206. DOI: org/10.1111/nph.13312.
44.
Von Lützow M., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., and Flessa H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions. – A review. Eur. J. Soil Sci., 57(4), 426-445. DOI: org/10.1111/j.1365-2389.2006.00809.x.
45.
Vopravil J., Khel T., Vrabcová T., Novák P., Novotný I., and Hladík J., 2010. Soil and its evaluation in the Czech Republic. Prague: Research Institute for Soil and Water Conservation, 55, 2, 148.
46.
Vopravil J., Khel T., Vráblík P., and Vráblíková J., 2017. Changes in physical and chemical soil characteristics as a result of subsurface tile drainage. Open J. Soil Sci., 7: 367-377.
47.
Woermann E., 1944. Ernährungswirtschaftliche Leistungs-maßstäbe. Mitteilungen der Landwirtschaft, 59, 787-792.
48.
Wolny-Koładka K., Jarosz R., Marcińska-Mazur L., Lošák T., and Mierzwa-Hersztek M., 2022. Effect of mineral and organic additions on soil microbial composition. Int. Agrophys., 36(2), 131-138.
https://doi.org/10.31545/intag....
49.
Zbíral J. and Honsa I., 2010. Soil analysis III: Uniform working procedures (in Czech). ÚKZUZ Brno.