RESEARCH PAPER
Development of photovoltaic power plants in the context of their impact on the agricultural production space
 
 
More details
Hide details
1
Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
 
 
Final revision date: 2025-01-11
 
 
Acceptance date: 2025-01-22
 
 
Publication date: 2025-03-27
 
 
Corresponding author
Szymon Pelczar   

Faculty of Civil Engineering and Resource Management, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
 
 
Int. Agrophys. 2025, 39(2): 175-189
 
HIGHLIGHTS
  • Photovoltaic power plants require large land for development
  • Photovoltaic power plants do not impact significantly on arable soil loss
  • Solar energy systems development does not affect national food safety
  • Prudence suggests the impact on soil properties should be studied in detail
KEYWORDS
TOPICS
ABSTRACT
The purpose of this study is to assess the impact of utility-scale photovoltaic power plants on the agricultural production space in Poland. The research, based on constructed power plants under exploitation, provides important information on the scope of knowledge concerning the impact of these power plants on the environment in the context of reducing available agricultural land and arable soil. The results of this study reveal that the cumulative impact of solar energy development on the subject of the study is low, despite the fact that on a local scale, land transformation for photovoltaic power plants seems to highly affect land use. Overall, the results indicate that the mean land use intensity of photovoltaic power plants is 1.24 ha per every 1 MW of installed capacity, what translates into the wheat yield loss reaching 5.96 Mg per 1 MW annually. Significantly, the results show that even large amounts of installed capacity from photovoltaic power plants do not significantly impact agricultural production space. Research also emphasises the necessity of best quality arable soil preservation and calls into question, whether the development of agrophotovoltaic and floating solar power plants is reasonable in Poland, considering accessible land.
CONFLICT OF INTEREST
The Author declare he has no conflict of interest. Any professional or private situation of the Author had no influence on the research and its result. The Author confirms he is an employee at Valorem Energies Poland (renewable company).
REFERENCES (46)
1.
Andersen, E., 2017. The farming system component of European agricultural landscapes. Farming systems analysis and design for sustainable intensification: new methods and assessments. Eur. J. Agronomy 82, 282-291. https://doi.org/10.1016/j.eja.....
 
2.
Barker, G., 2006. The Agricultural Revolution in Prehistory: Why did Foragers become Farmers? Oxford University Press. https://doi.org/10.1093/oso/97....
 
3.
Bolinger, M., Bolinger, G., 2022. Land requirements for utility-scale PV: An empirical update on power and energy density. IEEE J. Photovoltaics 12, 589-594. https://doi.org/10.1109/JPHOTO....
 
4.
Bukhary, S., Ahmad, S., Batista, J., 2018. Analyzing land and water requirements for solar deployment in the Southwestern United States. Renewable Sustain. Energy Rev. 82, 3288-3305. https://doi.org/10.1016/j.rser....
 
5.
Choi, C.S., Cagle, A.E., Macknick, J., Bloom, D.E., Caplan, J.S., Ravi, S., 2020. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Front. Environ. Sci. 8, 140. https://doi.org/10.3389/fenvs.....
 
6.
Development plan for meeting the current and future electricity demand for 2025-2034 [WWW Document], n.d. URL https://www.pse.pl/dokumenty (accessed 8.21.24).
 
7.
Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast) (Text with EEA relevance), 2024.
 
8.
Dvořáčková, H., Dvořáček, J., Vlček, V., Růžička, D., 2024. Are the soils degraded by the photovoltaic power plant? Cogent Food Agric. 10, 2294542. https://doi.org/10.1080/233119....
 
9.
Energy Regulatory Office, Report – information about electricity production from renewable microinstallations. 2023. [WWW Document]. BIP - Urząd Regulacji Energetyki. URL https://bip.ure.gov.pl/bip/o-u..., Raport-zbiorcze- informacje-dotyczace-wytwarzania-energii-elektrycznej-z-odnawial.html (accessed 8.20.24a).
 
10.
Energy Regulatory Office, Report – information about electricity prouction from renewable small installations (2023) [WWW Document]. URL https://bip.ure.gov.pl/bip/o-u... (accessed 8.20.24b).
 
11.
Eurostat, 2022. Eurostat [WWW Document]. URL https://ec.europa.eu/eurostat/... (accessed 8.8.24).
 
12.
Fusco, G., 2021. Twenty years of common agricultural policy in Europe: A Bibliometric Analysis. Sustainability 13, 10650. https://doi.org/10.3390/su1319....
 
13.
Global Photovoltaic Potential by Country, Global Solar Atlas [WWW Document], n.d. URL https://globalsolaratlas.info/....
 
14.
Guerin, T.F., 2019. Impacts and opportunities from large-scale solar photovoltaic (PV) electricity generation on agricultural production. Environmental Quality Management. https://doi.org/10.1002/tqem.2....
 
15.
Guindo, T., Hak, M.B., 2024. Assessing the effectiveness of agricultural policies on development: A systematic literature review from diverse countries. E3S Web Conf. 475, 04001. https://doi.org/10.1051/e3scon....
 
16.
Kalavrouziotis, I.K., Carter, J., Varnavas, S.P., Mehra, A., Drakatos, P.A., 2007. Towards an understanding of the effect of road pollution on adjacent food crops: Zea mays as an example. IJEP 30, 576. https://doi.org/10.1504/IJEP.2....
 
17.
Kibblewhite, M.G., 2018. Contamination of agricultural soil by urban and peri-urban highways: An overlooked priority? Environ. Pollution 242, 1331-1336. https://doi.org/10.1016/j.envp....
 
18.
Korzeniowski, S., 2018. Fundamentals of soi science and soil protection. Exercise guide (in Polish). Wydawnictwo Uczelniane Państwowej Wyższej Szkoły Zawodowej im. prof. Edwarda F. Szczepanika, Suwałki.
 
19.
Kurowska, K., Kryszk, H., Marks-Bielska, R., Mika, M., Leń, P., 2020. Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience. Land Use Policy 95, 104614. https://doi.org/10.1016/j.land....
 
20.
Libra, M., Kozelka, M., Šafránková, J., Belza, R., Poulek, V., Beránek, V., et al., 2024. Agrivoltaics: dual usage of agricultural land for sustainable development. Int. Agrophys. 38, 121-126. https://doi.org/10.31545/intag....
 
21.
Mancini, F., Nastasi, B., 2020. Solar energy data analytics: PV Deployment and land use. Energies 13, 417. https://doi.org/10.3390/en1302....
 
22.
Martinec, L., 2022. The influence of photovoltaic and nuclear energy sources on the use of land in the Czech Republic. Agric. Econ. – Czech 68, 307-316. https://doi.org/10.17221/61/20....
 
23.
Miller, L.M., Keith, D.W., 2019. Corrigendum: Observation-based solar and wind power capacity factors and power densities (2018 Environ. Res. Lett. 13 104008). Environ. Res. Lett. 14, 079501. https://doi.org/10.1088/1748-9....
 
24.
Moscatelli, M.C., Marabottini, R., Massaccesi, L., Marinari, S., 2022. Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Regional 29, e00500. https://doi.org/10.1016/j.geod....
 
25.
Muthu, M., Gopal, J., Kim, D.-H., Sivanesan, I., 2021. Reviewing the impact of vehicular pollution on road-side plants-future perspectives. Sustainability 13, 5114. https://doi.org/10.3390/su1309....
 
26.
Obane, H., Nagai, Y., Asano, K., 2020. Assessing land use and potential conflict in solar and onshore wind energy in Japan. Renewable Energy 160, 842-851. https://doi.org/10.1016/j.rene....
 
27.
Ong, S., Campbell, C., Denholm, P., Margolis, R., Heath, G., 2013. Land-Use Requirements for Solar Power Plants in the United States ( No. NREL/TP-6A20-56290, 1086349). https://doi.org/10.2172/108634....
 
28.
Polish Statistical Office, GUS – Local Data [WWW Document]. URL https://bdl.stat.gov.pl/bdl/da... (accessed 8.8.24).
 
29.
Qiu, T., Wang, Lunche, Lu, Y., Zhang, M., Qin, W., Wang, S., et al., 2022. Potential assessment of photovoltaic power generation in China. Renewable Sustain. Energy Rev. 154, 111900. https://doi.org/10.1016/j.rser....
 
30.
Rahman, A., Farrok, O., Haque, M.M., 2022. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable Sustain. Energy Rev. 161, 112279. https://doi.org/10.1016/j.rser....
 
31.
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., et al., 2018. Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology 69, 789-815. https://doi.org/10.1146/annure....
 
32.
RES installations (status of December 31, 2023) [WWW Document], URL https://www.ure.gov.pl/pl/oze/....
 
33.
Sanseverino, E.R., Cellura, M., Luu, L.Q., Cusenza, M.A., Nguyen Quang, N., Nguyen, N.H., 2021. Life-cycle land-use requirement for PV in Vietnam. Energies 14, 861. https://doi.org/10.3390/en1404....
 
34.
Scanes, C.G., 2018. The neolithic revolution, animal domestication, and early forms of animal agriculture. In: Animals and Human Society. Elsevier, 103-131. https://doi.org/10.1016/B978-0....
 
35.
Sirnik, I., Sluijsmans, J., Oudes, D., Stremke, S., 2023. Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems. Renewable Sustain. Energy Rev. 178, 113250. https://doi.org/10.1016/j.rser....
 
36.
Statistics Poland - Local Data Bank, Crop production in Poland [WWW Document]. URL https://bdl.stat.gov.pl/bdl/da... (accessed 8.8.24).
 
37.
Statistics Poland – Local Data Bank [WWW Document], URL https://bdl.stat.gov.pl/bdl/da... (accessed 8.8.24b).
 
38.
Suchoń, A., 2017. The Lease and sale of agricultural real estate in Poland – Legal and economic aspects. EU Agrarian Law 6, 43-47. https://doi.org/10.1515/eual-2....
 
39.
Tauger, M.B., 2010. Agriculture in world history. Routledge, London. https://doi.org/10.4324/978020....
 
40.
Tavora, J., Cortinhal, M.J., Meireles, M., 2020. Land use intensity and land occupation of utility-scale photovoltaic power plants in continental Portugal. 37th European Photovoltaic Solar Energy Conference and Exhibition; 1975-1978 4 pa-ges, 2064 kb.
 
41.
Van De Ven, D.-J., Capellan-Peréz, I., Arto, I., Cazcarro, I., De Castro, C., Patel, P., et al., 2021. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 11, 2907. https://doi.org/10.1038/s41598....
 
42.
Van Zalk, J., Behrens, P., 2018. The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the U.S. Energy Policy 123, 83-91. https://doi.org/10.1016/j.enpo....
 
43.
Vourdoubas, J., 2024. Use of solar photovoltaic systems for meeting the power demand in the Island of Crete, Greece avoiding the land use conflicts. Am Sci. Res. J. Eng. Technol. Sci. 98, 37-52.
 
44.
Vranken, L., Tabeau, E., Roebeling, P., Ciaian, P., Rizov, M., Ratinger, T., et al., 2021. Agricultural land market regulations in the EU Member States. EUR 30838 EN, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/86127, JRC126310.
 
45.
Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Högy, P., 2019. Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 39, 1-20. https://doi.org/10.1007/s13593....
 
46.
Wu, W., Qin, Y., Yue, S., Ren, L., 2021. Observational study on the impact of large-scale photovoltaic development on soil temperature. IOP Conf. Ser.: Earth Environ. Sci. 826, 012038. https://doi.org/10.1088/1755-1....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top