RESEARCH PAPER
 
HIGHLIGHTS
  • The phenolics and antioxidant content was determined
  • Phenolics and antioxidant activity is increased during the germination
  • Beans and lentils were examinated
KEYWORDS
TOPICS
ABSTRACT
Beans and lentils are good sources of overall phenolic content and have high levels of free radical scavenging capacity. The goal of the present study was to evaluate the phenolic and antioxidant content of both dried and germinated beans and lentils. In order to do this, total phenolic content, 2-2-diphenyl-1-picrylhydrazine, and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) antioxidant were measured using the Folin-Ciocalteu method. Seven different varieties of beans and lentils were used to extract total phenolic content using 50% (v/v) aqueous ethanol. In samples of germinated seeds, the legumes showed significantly (p<0.05%) higher total phenolic content, 2-2-diphenyl-1-picrylhydrazine, and antioxidant activity. However, the analysis revealed an increase in the total phenolic content content in sprouted beans and lentils and decreased activity in dried beans. The present study suggests that the content of phenolics and antioxidant activity in legumes are increased during the germination process, but are lower in dried samples. The present work supports the idea that germinated beans are a natural source of antioxidants that can be used commercially.
FUNDING
This work was funded by the Researchers Supporting Project, number (RSPD2025R637), King Saud University, Riyadh, Saudi Arabia.
CONFLICT OF INTEREST
The Authors do not declare any conflict of interest.
REFERENCES (44)
1.
Aguilera, Y., Herrera, T., Liébana, R., Rebollo-Hernanz, M., Sanchez-Puelles, C., Martín-Cabrejas, M.A., 2015. Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity. J. Agri. Food Chem. 63(36), 7967-7974. https://doi.org/10.1021/acs.ja....
 
2.
Aguilera, Y., Liebana, R., Herrera, T., Rebollo-Hernanz, M., Sanchez-Puelles, C., Benitez, V., et al., 2014. Effect of illumination on the content of melatonin, phenolic compounds, and antioxidant activity during germination of lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.). J. Agri. Food Chem. 62, 10736-10743. https://doi.org/10.1021/jf5036....
 
3.
Alkaltham, M.S., Musa Özcan, M., Uslu, N., Salamatullah, A.M., Hayat, K., 2022. Changes in antioxidant activity, phenolic compounds, fatty acids, and mineral contents of raw, germinated, and boiled lentil seeds. J. Food Sci. 87, 1639-1649. https://doi.org/10.1111/1750-3....
 
4.
Amarowicz, R., Estrella, I., Hernández, T., Dueñas, M., Troszyńska, A., Kosińska A., et al., 2009. Antioxidant activity of a red lentil extract and its fractions. Int. J. Mol Sci. 10(12), 5513-5527. https://doi.org/10.3390/ijms10....
 
5.
Amarowicz, R., Estrella, I., Hernandez, T., Troszyńska, A., 2008. Antioxidant activity of extract of adzuki bean and its fractions. J. Food Lip. 15, 119-136. DOI: https://doi.org/10.1111/j.1745....
 
6.
Amarowicz, R., Troszyńska, A., 2003. Antioxidant activity of extract of pea and its fractions of low molecular phenolics and tannins. Pol. J. Food Nutr. Sci. 53, 10-15.
 
7.
Atudorei, D., Stroe, S.G., Codină, G.G., 2021. Impact of germination on the microstructural and physicochemical properties of different legume types. Plants 10(3), 592. https://doi.org/10.3390/plants....
 
8.
Augustin, M.A., Cole, M.B., 2022. Towards a sustainable food system by design using faba bean protein as an example. Trend. Food Sci. Technol. 125, 1-11. https://doi.org/10.1016/j.tifs....
 
9.
Awada, S.H., Hady, A., Hassan, A.B., Ali, I., Babiker, E.E., 2005. Antinutritional factors content and availability of protein, starch and mineral of maize (Zeamays linnaus) and lentil (Lens culinaris) as influenced by domestic processing. J. Food Tech. 3, 523-528.
 
10.
Balasundram, N., Sundram, K., Samman, S., 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chem. 99, 191-203. https://doi.org/10.1016/j.food....
 
11.
Chávez-Mendoza, C., Hernández-Figueroa, K.I., Sánchez, E., 2018. Antioxidant capacity and phytonutrient content in the seed coat and cotyledon of common beans (Phaseolus vulgaris L.) from various regions in Mexico. Antioxidants 8, 5. https://doi.org/10.3390/antiox....
 
12.
Chinma, C.E., Abu, J.O., Asikwe, B.N., Sunday, T., Adebo, O.A., 2021. Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. Lwt, 140, 110749. https://doi.org/10.1016/j.lwt.....
 
13.
Dueñas, M., Hernandez, T., Estrella, I., Fernandez, D., 2009. Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem. 117, 599-607. https://doi.org/10.1016/j.food....
 
14.
Dueñas, M., Martínez-Villaluenga, C., Limón, R.I., Peñas, E., Frias, J., 2015. Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Res. Int. 70, 55-63. https://doi.org/10.1016/j.food....
 
15.
Enciso-Roca, E.C., Aguilar-Felices, E.J., Tinco-Jayo, J.A., Arroyo-Acevedo, J.L., Herrera-Calderon, O., 2021. Biomolecules with antioxidant capacity from the seeds and sprouts of 20 varieties of Chenopodium quinoa willd. (quinoa). Plants 10(11), 2417. https://doi.org/10.3390/plants....
 
16.
Fuentes-Zaragoza, E., Riquelme-Navarrete, M.J., Sánchez-Zapata, E., Pérez-Álvarez, J.A., 2010. Resistant starch as functional ingredient: A review. Food Res. Int. 43, 931-942. https://doi.org/10.1016/j.food....
 
17.
Ganesan, K., Xu, B., 2017. Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int. J. Mol. Sci. 18, 2331. https://doi.org/10.3390/ijms18....
 
18.
Giusti, F., Caprioli, G., Ricciutelli, M., Vittori, S., Sagratini, G., 2017. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 221, 689-697. https://doi.org/10.1016/j.food....
 
19.
Goldstein, N., Reifen, R., 2022. The potential of legume-derived proteins in the food industry. Grain Oil Sci. Technol. 5, 167-178. https://doi.org/10.1016/j.gaos....
 
20.
Gomes, M.P., Garcia, Q.S., 2013. Reactive oxygen species and seed germination. Biologia 68, 351-357. https://doi.org/10.2478/s11756....
 
21.
Gubanenko, G.A., Zykova, I.D., Naimushina, L.V., Rechkina, E.A., Mayurnikova, L.A., 2019. Antioxidant activity evaluation of aqueous extracts of chickpea and lentil seedlings. InIOP Conf. Series: Earth and Environmental Science, IOP Publishing, 315, 052015.
 
22.
James, S., Nwabueze, T.U., Ndife, J., Onwuka, G.I., Usman, M.A.A., 2020. Influence of fermentation and germination on some bioactive components of selected lesser legumes indigenous to Nigeria. J. Agri. Food Res. 2, 100086. https://doi.org/10.1016/j.jafr....
 
23.
Khang, D.T., Dung, T.N., Elzaawely, A.A., Xuan, T.D., 2016. Phenolic profiles and antioxidant activity of germinated legumes. Foods 5, 27. https://doi.org/10.3390/foods5....
 
24.
Kiersnowska, K., Jakubczyk, A., 2022. Bioactive peptides obtained from legume seeds as new compounds in metabolic syndrome prevention and diet therapy. Foods 11(20), 3300. https://doi.org/10.3390/foods1....
 
25.
Liu, W., Dun, M., Liu, X., Zhang, G., Ling, J., 2022. Effects on total phenolic and flavonoid content, antioxidant properties, and angiotensin I-converting enzyme inhibitory activity of beans by solid-state fermentation with Cordyceps militaris. Int. J. Food Prop. 25, 477-491. https://doi.org/10.1080/109429....
 
26.
López-Amorós, M.L., Hernández, T., Estrella, I., 2006. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Compos. Anal. 19(4), 277-283. https://doi.org/10.1016/j.jfca....
 
27.
Marinangeli, C.P., Jones, P.J., 2011. Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. Br. J. Nutr. 105, 110-117. https://doi.org/10.1017/S00071....
 
28.
Medendorp, J., DeYoung, D., Thiagarajan, D.G., Duckworth, R., Pittendrigh, B., 2022. A systems perspective of the role of dry beans and pulses in the future of global food security: opportunities and challenges. Dry Beans and Pulses: Production, Processing, and Nutrition, 2nd Edition. 531-50. https://doi.org/10.1002/978111....
 
29.
Megat Rusydi, M.R., Azrina, D.A., 2012. Effect of germination on total phenolic, tannin and phytic acid contents in soy bean and peanut. Int. Food Res. J. 19, 673-677.
 
30.
Nair, S.S., Nithyakala, C.M., Noronha, I.G., Nazia Sultana, N.S., Somashekharaiah, B.V., 2012. Isolation and determination of nutritional and antinutritional compounds from the seeds of selected plant species. Int. J. Pharm. Res. 4, 3529-3534.
 
31.
Oyeyinka, S.A., Singh, S., Amonsou, E.O., 2017. Physicochemical properties of starches extracted from bambara groundnut landraces. Starch‐Stärke 69, 1600089. https://doi.org/10.1002/star.2....
 
32.
Padhi, E.M., Liu, R., Hernandez, M., Tsao, R., Ramdath, D.D., 2017. Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. J. Funct. Foods 38, 602-611.
 
33.
Paucar-Menacho, L.M., Berhow, M.A., Mandarino, J.M.G., de Mejia, E.G., Chang, Y.K., 2010. Optimisation of germination time and temperature on the concentration of bioactive compounds in Brazilian soybean cultivar BRS 133 using response surface methodology. Food Chem. 119, 636-642. https://doi.org/10.1016/j.food....
 
34.
Rybiński, W., Karamać, M., Sulewska, K., Amarowicz, R., 2019. Antioxidant activity of faba bean extracts. In: Plant Extracts. Intech. Open. 1-9. https://doi.org/10.5772/intech....
 
35.
Sakhi, H.A., Ahmad, S., Sibt-e-Abbas, M., Yaqoob, S., Umar, A., Ali, Z., et al., 2025. Assessing the suitability of wheat germplasm for biscuit preparation. Int. Agrophys. 39(1), 1-11. https://doi.org/10.31545/intag....
 
36.
Saleh, H.M., Hassan, A.A., Mansour, E.H., Fahmy, H.A., El-Bedawey, A.E.F.A., 2019. Melatonin, phenolics content and antioxidant activity of germinated selected legumes and their fractions. J. Saudi Soc. Agri. Sci. 18, 294-301. https://doi.org/10.1016/j.jssa....
 
37.
Salem, A.A., El-Bostany, N.A., Al-Askalany, S.A., Thabet, H.A., 2014. Effect of domestic processing methods of some legumes on phytochemicals content and in vitro bioavailability of some minerals. J. Amer. Sci. 10, 276-288.
 
38.
Siddiq M., Uebersax M.A., Siddiq F., Siddiq, M., Uebersax, M.A., Siddiq, F., 2022. Global production, trade, processing and nutritional profile of dry beans and other pulses. Dry Beans and Pulses: Production, Processing, and Nutrition, 2nd Edition 1-28.
 
39.
Wang, X., Yang, R., Jin, X., Chen, Z., Zhou, Y., Gu, Z., 2015. Effect of germination and incubation on Zn, Fe, and Ca bioavailability values of soybeans (Glycine max L.) and mung beans (Vigna radiate L.). Food Sci. Biotech. 24, 1829-1835.
 
40.
Xu, B.J., Chang, S.K., 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72, S159-S166. https://doi.org/10.1111/j.1750....
 
41.
Xue, J., Guo, C., Shen, Y., Li, M., Chu, J., Yao, X., 2021. Brassinolide soaking and preharvest UV-B radiation influence the shelf life of small black bean sprouts. Food Chem. 352, 129322.
 
42.
Ying, M., Azlan, A., Al-Sheraji, S.H., Hassan, F.A., Prasad, K.N., 2013. Antioxidant activities and total phenolic content in germinated and non-germinated legume extracts following alkaline-acid hydrolysis. Pak. J. Nut. 12, 1036.
 
43.
Zhang, B., Deng, Z., Ramdath, D.D., Tang, Y., Chen, P.X., Liu, R., et al., 2015. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 172, 862-872. https://doi.org/10.1016/j.food....
 
44.
Zhao, Y., Du, S.K., Wang, H., Cai, M., 2014. In vitro antioxidant activity of extracts from common legumes. Food Chem. 152, 462-466. https://doi.org/10.1016/j.food....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top