RESEARCH PAPER
Environmental modeling of impacts of agricultural land changes using Markov chain and machine learning (case study: Shanghai metropolis, China)
,
 
,
 
 
 
 
More details
Hide details
1
School of Art Design and Media, East China University of Science and Technology, Shanghai, 200237, China
 
2
School of Architecture and Environmental Arts, Shanghai Urban Construction Vocational College, 201999, China
 
3
Shanghai Tongzeng Planning and Architectural Design Co., 200092, China
 
 
Final revision date: 2024-07-01
 
 
Acceptance date: 2024-07-04
 
 
Publication date: 2024-08-29
 
 
Corresponding author
Yan Pang   

Shanghai Urban Construction Vocational College, School of Architecture and Environmental Arts, 201999, China
 
 
Int. Agrophys. 2024, 38(4): 353-371
 
HIGHLIGHTS
  • Agricultural land changes, thermal radiation, emissivity, normalized difference vegetation index, normalized difference build-up index, normalized difference water index
KEYWORDS
TOPICS
ABSTRACT
Learning about potential land uses is necessary to make the best use of land resources due to ongoing temporal change caused by human activity. The study uses Landsat 5 and 8 images to investigate changes in land cover, especially agricultural land, in Shanghai, China over the last 20 years in 5-year intervals due to urbanization. Also, through the calculation of environmental indices of the earth’s surface, such as normalized difference vegetation index, normalized difference built-up index, normalized difference water index, emissivity, thermal radiance, and land surface temperature, the changes in their values in relation to the land cover changes were investigated. To capture the nature of the changes that have occurred, three other major land covers, such as urban, vegetation, and water classes, were also monitored in parallel with agricultural lands. Land cover and land surface temperature changes were also predicted for 2030 using the Markov chain method and GBM machine learning. Based on the results from 2002 to 2020, the agricultural and other land covers of this city underwent significant changes, and most of the agricultural lands have been lost in favor of the urban expansion. Consequently, the class for urban and impervious areas, has grown by 33.87%, making the class with the largest overall positive growth and, on the other hand, the agricultural land class, which had the largest negative growth at 57%, had a fall. Moreover, despite the increase of 10.5% in 2020 in the class of vegetated areas, the urban area’s water class, water body class, has grown by 16.4%. The land cover prediction map predicts areas in water body class and urban and impervious areas to rise, while agricultural land class and vegetated areas will contract. The normalized difference vegetation index index shows a 58.54% decline, while the normalized difference built-up index and normalized difference water index indices and land surface temperature values increase. There is a strong correlation between the normalized difference vegetation index, normalized difference built-up index, normalized difference water index, and thermal radiance indices. The results of prediction and estimation of land cover and surface temperature also indicate reduction of agricultural land for the benefit of increasing urban land and a parallel increase in land surface temperature in 2030. The results of this research can represent the changes that have occurred and their effects as well as a roadmap for planning and policymaking in the future of Shanghai’s environment for managers and planners.
FUNDING
Ministry of Education's Program for Planning Funds in Humanities and Social Sciences Research-Research on Development Strategies for Characteristic Historical and Cultural Towns in the Grand Canal Cultural Belt (Shandong, Jiangsu, and Zhejiang Sections), 20YJAZH121. Major Project of the National Social Science Fund-Study on the Investigation, Arran-gement, Protection and Utilization of Traditional Village Resources Associated with Taiwan Province,21&ZD215. Shanghai Summit Discipline in Design.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES (130)
1.
Ackerman, B., 1985. Temporal march of the Chicago heat island. J. Climate Appl. Meteorol. 24, 547-554. https://doi.org/10.1175/1520-0...<0547:TMOTCH>2.0.CO;2.
 
2.
Alavipanah, S., Wegmann, M., Qureshi, S., Weng, Q., Koellner, T., 2015. The role of vegetation in mitigating urban land surface temperatures: A case study of Munich, Germany during the warm season. Sustainability 7, 4689-4706. https://doi.org/10.3390/su7044....
 
3.
Alavipanah, S.K., Mansourmoghaddam, M., Gomeh, Z., Galehban, E., Hamzeh, S., 2022. The reciprocal effect of global warming and climatic change (new perspective): A review. Desert 27, 291-305.
 
4.
Alberti, M., Marzluff, J.M., 2004a. Ecological resilience in urban ecosystems: linking urban patterns to human and ecological functions. Urban ecosystems 7, 241-265. https://doi.org/10.1023/B:UECO....
 
5.
Ali, S., Eum, H.-I., Cho, J., Dan, L., Khan, F., Dairaku, K., et al., 2019. Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmospheric Res. 222, 114-133. https://doi.org/10.1016/j.atmo....
 
6.
Amiri, R., Weng, Q., Alimohammadi, A., Alavipanah, S.K., 2009. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing Environ. 113, 2606-2617. https://doi.org/10.1016/j.rse.....
 
7.
Avdan, U., Jovanovska, G., 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sensors 2016. https://doi.org/10.1155/2016/1....
 
8.
Bokaie, M., Zarkesh, M.K., Arasteh, P.D., Hosseini, A., 2016. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustainable Cities Soc. 23, 94-104. https://doi.org/10.1016/j.scs.....
 
9.
Borana, S., Yadav, S., 2017. Prediction of land cover changes of Jodhpur city using cellular automata Markov modelling techniques. Int. J. Eng. Sci. 17, 15402-15406.
 
10.
Carlson, T.N., Arthur, S.T., 2000. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Global Planetary Change 25, 49-65. https://doi.org/10.1016/S0921-....
 
11.
Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing Environ. 113, 893-903. https://doi.org/10.1016/j.rse.....
 
12.
Chen, X.-L., Zhao, H.-M., Li, P.-X., Yin, Z.-Y., 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing Environ. 104, 133-146. https://doi.org/10.1016/j.rse.....
 
13.
Cheng, X., Duan, W., Chen, W., Ye, W., Mao, F., Ye, F., Zhang, Q., 2009. Infrared radiation coatings fabricated by plasma spray. J. Thermal Spray Technol. 18, 448-450. https://doi.org/10.1007/s11666....
 
14.
Coseo, P., Larsen, L., 2014. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landscape Urban Planning 125, 117-129. https://doi.org/10.1016/j.land....
 
15.
Dadhich, P.N., Hanaoka, S., 2010. Remote sensing, GIS and Markov's method for land use change detection and prediction of Jaipur district. J. Geomatics 4, 9-15.
 
16.
Deakin, M., Allwinkle, S., 2007. Urban regeneration and sustainable communities: The role of networks, innovation, and creativity in building successful partnerships. J. Urban Technol. 14, 77-91. https://doi.org/10.1080/106307....
 
17.
Dos Santos, A.R., De Oliveira, F.S., Da Silva, A.G., Gleriani, J.M., Goncalves, W., Moreira, G.L., et al., G. 2017. Spatial and temporal distribution of urban heat islands. Science Total Environ. 605, 946-956. https://doi.org/10.1016/j.scit....
 
18.
Duncan, J., Boruff, B., Saunders, A., Sun, Q., Hurley, J., Amati, M., 2019. Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science Total Environ. 656, 118-128. https://doi.org/10.1016/j.scit....
 
19.
Dutta, D., Kundu, A., Patel, N., Saha, S., Siddiqui, A., 2015. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egyptian J. Remote Sensing and Space Sci. 18, 53-63. https://doi.org/10.1016/j.ejrs....
 
20.
Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. J. Animal Ecol. 77, 802-813. https://doi.org/10.1111/j.1365....
 
21.
EPA, 2017. Heat Island Compendium Chapter 1: Urban Heat Island Basics. United States Environmental Protection Agency.
 
22.
Estoque, R.C., Pontius Jr, R.G., Murayama, Y., Hou, H., Thapa, R.B., Lasco, R.D., Villar, M.A., 2018. Simultaneous comparison and assessment of eight remotely sensed maps of Philippine forests. Int. J. Applied Earth Observation Geoinformation 67, 123-134. https://doi.org/10.1016/j.jag.....
 
23.
Falls, S., Dakota, S., 2020. Landsat 8-9 Operational Land Imager (OLI) - Thermal Infrared Sensor (TIRS) Collection 2 Level 2 (L2) Data Format Control Book (DFCB). U.S. Geological Survey (USGS).
 
24.
Fei, H., Jian-ming, C., 2011. The evolution and reconstruction of peri-urban rural habitat in China (in China). Geographical Research 30, 1271-1284.
 
25.
Ghosh, A., Joshi, P., 2014. Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes. ISPRS J. Photogrammetry Remote Sensing 96, 76-93. https://doi.org/10.1016/j.ispr....
 
26.
Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M., 2008. Global change and the ecology of cities. Science 319, 756-760. https://doi.org/10.1126/scienc....
 
27.
Grimmond, C., 2006. Progress in measuring and observing the urban atmosphere. Theoretical Applied Climatology 84, 3-22. https://doi.org/10.1007/s00704....
 
28.
Grimmond, S.U., 2007. Urbanization and global environmental change: local effects of urban warming. Geographical J. 173, 83-88. https://doi.org/10.1111/j.1475....
 
29.
Guan, D., Gao, W., Watari, K., Fukahori, H., 2008. Land use change of Kitakyushu based on landscape ecology and Markov model. J. Geographical Sci. 18, 455-468. https://doi.org/10.1007/s11442....
 
30.
Guha, S., Govil, H., 2020. An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environment, Develop. Sustain. 1-20. https://doi.org/10.1007/s42452....
 
31.
Gupta, A., Moniruzzaman, M., Hande, A., Rousta, I., Olafsson, H., Mondal, K.K., 2020. Estimation of particulate matter (PM 2.5, PM 10) concentration and its variation over urban sites in Bangladesh. SN Applied Sci. 2, 1-15. https://doi.org/10.1007/s42452....
 
32.
Han, D., An, H., Cai, H., Wang, F., Xu, X., Qiao, Z., et al., 2023. How do 2D/3D urban landscapes impact diurnal land surface temperature: Insights from block scale and machine learning algorithms. Sustainable Cities Society 99, 104933. https://doi.org/10.1016/j.scs.....
 
33.
Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H., 2009. The elements of statistical learning: data mining, inference, and prediction. Springer. https://doi.org/10.1007/978-0-....
 
34.
He, B.-J., 2019. Towards the next generation of green building for urban heat island mitigation: Zero UHI impact building. Sustainable Cities Society 50, 101647. https://doi.org/10.1016/j.scs.....
 
35.
He, B.-J., Zhu, J., Zhao, D.-X., Gou, Z.-H., Qi, J.-D., Wang, J., 2019. Co-benefits approach: Opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 86, 147-157. https://doi.org/10.1016/j.land....
 
36.
Hewitt, V., Mackres, E., Shickman, K., 2014. Cool policies for cool cities: Best practices for mitigating urban heat islands in North American cities. American Council for an Energy-Efficient Economy.
 
37.
Hong, J.-W., Hong, J., 2016. Changes in the Seoul metropolitan area urban heat environment with residential redevelopment. J. App. Meteor. Climatol. 55, 1091-1106. https://doi.org/10.1175/JAMC-D....
 
38.
Hou, H., Ding, F., Li, Q., 2018. Remote sensing analysis of changes of urban thermal environment of Fuzhou city in China in the past 20 years. J. Geo-information Sci. 20, 385-395.
 
39.
Hussain, S., Mubeen, M., Nasim, W., Mumtaz, F., Abdo, H.G., Mostafazadeh, R., et al., 2024. Assessment of future prediction of urban growth and climate change in district Multan, Pakistan using CA-Markov method. Urban Climate 53, 101766. https://doi.org/10.1016/j.ucli....
 
40.
Institute, W.R. 1995. World Resources, 1994-95: A Report, Oxford University Press.
 
41.
Ishtiaque, A., Shrestha, M., Chhetri, N., 2017. Rapid urban growth in the Kathmandu Valley, Nepal: Monitoring land use land cover dynamics of a himalayan city with landsat imageries. Environments 4, 72. https://doi.org/10.3390/enviro....
 
42.
Islam, S., Ma, M., 2018. Geospatial monitoring of land surface temperature effects on vegetation dynamics in the Southeastern Region of Bangladesh from 2001 to 2016. ISPRS Int. J. Geo-Information 7, 486. https://doi.org/10.3390/ijgi71....
 
43.
Jaber, S.M., 2018. Landsat-based vegetation abundance and surface temperature for surface urban heat island studies: the tale of Greater Amman Municipality. Annals GIS 24, 195-208. https://doi.org/10.1080/194756....
 
44.
James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to statistical learning. Springer. https://doi.org/10.1007/978-1-....
 
45.
Jiang, J., Tian, G., 2010. Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia Environ. Sci. 2, 571-575. https://doi.org/10.1016/j.proe....
 
46.
Jianping, L., Bai, Z., Feng, G., 2005. RS-and-GIS-supported forecast of grassland degradation in southwest Songnen plain by Markov model. Geo-spatial Information Sci. 8, 104-109. https://doi.org/10.1007/BF0282....
 
47.
Kaloustian, N., Diab, Y., 2015. Effects of urbanization on the urban heat island in Beirut. Urban Climate 14, 154-165. https://doi.org/10.1016/j.ucli....
 
48.
Keramitsoglou, I., Kiranoudis, C.T., Weng, Q., 2013. Downscaling geostationary land surface temperature imagery for urban analysis. IEEE Geoscience and Remote Sensing Letters 10, 1253-1257. https://doi.org/10.1109/LGRS.2....
 
49.
Khan, M., Qasim, M., Tahir, A.A., Farooqi, A., 2023. Machine learning-based assessment and simulation of land use modification effects on seasonal and annual land surface temperature variations. Heliyon 9. https://doi.org/10.1016/j.heli....
 
50.
Kikon, N., Singh, P., Singh, S.K., Vyas, A., 2016. Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities Society 22, 19-28. https://doi.org/10.1016/j.scs.....
 
51.
Knauer, K., Gessner, U., Fensholt, R., Forkuor, G., Kuenzer, C., 2017. Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of population growth and implications for the environment. Remote Sensing 9, 132. https://doi.org/10.3390/rs9020....
 
52.
Krauss, C., Do, X.A., Huck, N., 2017. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. Eur. J. Operational Res. 259, 689-702. https://doi.org/10.1016/j.ejor....
 
53.
Kumar, S., Radhakrishnan, N., Mathew, S., 2014. Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards Risk 5, 145-156. https://doi.org/10.1080/194757....
 
54.
Kumari, B., Tayyab, M., Shahfahad, Salman, Mallick, J., Khan, M.F., Rahman, A., 2018. Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sensing Earth Systems Sci. 1, 63-78. https://doi.org/10.1007/s41976....
 
55.
Kumhálová, J., Matějková, Š., 2017. Yield variability prediction by remote sensing sensors with different spatial resolution. Int. Agrophys. 31, 195-202. https://doi.org/10.1515/intag-....
 
56.
Kurucu, Y., Chiristina, N.K., 2008. Monitoring the impacts of urbanization and industrialization on the agricultural land and environment of the Torbali, Izmir region, Turkey. Environmental Monitoring Assessment, 136, 289-297. https://doi.org/10.1007/s10661....
 
57.
Landsat 8 Data Users Handbook, 2015. Department of the Interior US Geological Survey.
 
58.
Li, Q., Zheng, H., 2023. Prediction of summer daytime land surface temperature in urban environments based on machine learning. Sustainable Cities Soc. 97, 104732. https://doi.org/10.1016/j.scs.....
 
59.
Li, X., Yeh, A., 1998. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens. 19, 1501-1518. https://doi.org/10.1080/014311....
 
60.
Li, X., Zhou, Y., Asrar, G.R., Imhoff, M., Li, X., 2017. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment, 605, 426-435. https://doi.org/10.1016/j.scit....
 
61.
Li, Y.-Y., Zhang, H., Kainz, W., 2012. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Applied Earth Observation and Geoinformation 19, 127-138. https://doi.org/10.1016/j.jag.....
 
62.
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., et al., 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment, 131, 14-37. https://doi.org/10.1016/j.rse.....
 
63.
Lin, X., Zhang, W., Huang, Y., Sun, W., Han, P., Yu, L., Sun, F., 2016. Empirical estimation of near-surface air temperature in China from MODIS LST data by considering physiographic features. Remote Sensing, 8, 629. https://doi.org/10.3390/rs8080....
 
64.
Liu, F., Wang, X., Sun, F., Wang, H., Wu, L., Zhang, X., Liu, W. , Che, H., 2022. Correction of Overestimation in Observed Land Surface Temperatures Based on Machine Learning Models. J. Climate 35, 5359-5377. https://doi.org/10.1175/JCLI-D....
 
65.
Liu, G., Chen, S., Gu, J., 2019. Urban renewal simulation with spatial, economic and policy dynamics: The rent-gap theory-based model and the case study of Chongqing. Land Use Policy 86, 238-252. https://doi.org/10.1016/j.land....
 
66.
Lo, C., Quattrochi, D.A., 2003. Land-use and land-cover change, urban heat island phenomenon, and health implications. Photogrammetric Eng. Remote Sensing 69, 1053-1063. https://doi.org/10.14358/PERS.....
 
67.
Logsdon, M.G., Bell, E.J., Westerlund, F.V., 1996. Probability mapping of land use change: A GIS interface for visualizing transition probabilities. Computers, Environment Urban Systems 20, 389-398. https://doi.org/10.1016/S0198-....
 
68.
Luo, J., Wang, Y., Li, G., 2023. The innovation effect of administrative hierarchy on intercity connection: The machine learning of twin cities. J. Innovation Knowledge 8, 100293. https://doi.org/10.1016/j.jik.....
 
69.
Mansourmoghaddam, M., Ghafarian Malamiri, H.R., Arabi Aliabad, F., Fallah Tafti, M., Haghani, M., Shojaei, S., 2022a. The Separation of the Unpaved Roads and Prioritization of Paving These Roads Using UAV Images. Air, Soil Water Res. 15, 11786221221086285. https://doi.org/10.1177/117862....
 
70.
Mansourmoghaddam, M., Ghafarian Malamiri, H.R., Rousta, I., Olafsson, H., Zhang, H., 2022b. Assessment of palm Jumeirah Island's construction effects on the surrounding water quality and surface temperatures during 2001-2020. Water 14, 634. https://doi.org/10.3390/w14040....
 
71.
Mansourmoghaddam, M., Naghipur, N., Rousta, I., Ghaffarian, H.R., 2022c. Temporal and spatial monitoring and forecasting of suspended dust using google earth engine and remote sensing data (Case Study: Qazvin Province). Desert Management 10, 77-98.
 
72.
Mansourmoghaddam, M., Rousta, I., Ghafarian Malamiri, H., 2022d. Evaluation of the classification accuracy of NDVI index in the preparation of land cover map. Desert, 27, 329-341.
 
73.
Mansourmoghaddam, M., Rousta, I., Zamani, M. S., Mokhtari, M.H., Karimi Firozjaei, M., Alavipanah, S.K., 2022e. Investigating and modeling the effect of the composition and arrangement of the landscapes of Yazd City on the land surface temperature using machine learning and Landsat-8 and Sentinel-2 Data. Iranian J. Remote Sensing GIS 15, 1-26.
 
74.
Mansourmoghaddam, M., Naghipur, N., Rousta, I., Alavipanah, S.K., Olafsson, H., Ali, A. A., 2023a. Quantifying the effects of green-town development on land surface temperatures (LST) (A Case Study at Karizland (Karizboom), Yazd, Iran). Land 12, 885. https://doi.org/10.3390/land12....
 
75.
Mansourmoghaddam, M., Rousta, I., Cabral, P., Ali, A.A., Olafsson, H., Zhang, H., et al., 2023b. Investigation and prediction of the land use/land cover (LU/LC) and land surface temperature (LST) changes for Mashhad City in Iran during 1990-2030. Atmosphere 14, 741. https://doi.org/10.3390/atmos1....
 
76.
Mansourmoghaddam, M., Rousta, I., Zamani, M., Olafsson, H., 2023c. Investigating and predicting Land Surface Temperature (LST) based on remotely sensed data during 1987-2030 (A case study of Reykjavik city, Iceland). Urban Ecosystems 1-23. https://doi.org/10.1007/s11252....
 
77.
Mansourmoghaddam, M., Rousta, I., Ghafarian Malamiri, H., Sadeghnejad, M., Krzyszczak, J., Ferreira, C.S., 2024. Modeling and estimating the land surface temperature (LST) using remote sensing and machine learning (Case Study: Yazd, Iran). Remote Sensing 16. https://doi.org/10.3390/rs1603....
 
78.
Mansourmoghaddam, M., Rousta, I., Zamani, M., Mokhtari, M.H., Karimi Firozjaei, M., Alavipanah, S.K., 2021. Study and prediction of land surface temperature changes of Yazd city: assessing the proximity and changes of land cover. J. RS GIS for Natural Resources 12, 1-27.
 
79.
McFeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sensing 17, 1425-1432. https://doi.org/10.1080/014311....
 
80.
Meilianda, E., Pradhan, B., Comfort, L.K., Alfian, D., Juanda, R., Syahreza, S., et al., 2019. Assessment of post-tsunami disaster land use/land cover change and potential impact of future sea-level rise to low-lying coastal areas: A case study of Banda Aceh coast of Indonesia. Int. J. Disaster Risk Reduction 41, 101292. https://doi.org/10.1016/j.ijdr....
 
81.
Merchant, C.J., Embury, O., Roberts‐Jones, J., Fiedler, E., Bulgin, C.E., Corlett, G.K., Good, S., Mclaren, A., Rayner, N., Morak‐Bozzo, S., 2014. Sea surface temperature datasets for climate applications from Phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geoscience Data J. 1, 179-191. https://doi.org/10.1002/gdj3.2....
 
82.
Meseguer, J., Perez-Grande, I., Sanz-Andres, A., 2012. Spacecraft thermal control. Elsevier. https://doi.org/10.1533/978085....
 
83.
Moniruzzaman, M., Thakur, P.K., Kumar, P., Ashraful Alam, M., Garg, V., Rousta, I., et al., 2021. Decadal urban land use/land cover changes and its impact on surface runoff potential for the Dhaka City and surroundings using remote sensing. Remote Sensing 13, 83. https://doi.org/10.3390/rs1301....
 
84.
Moore, M., Gould, P., Keary, B.S., 2003. Global urbanization and impact on health. Int. J. Hygiene Environ. Health 206, 269-278. https://doi.org/10.1078/1438-4....
 
85.
Moulin, S., Kergoat, L., Viovy, N., Dedieu, G., 1997. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. J. Climate 10, 1154-1170. 10.1175/1520-0442(1997)010%3C1154:GSAOVP%3E2.0.CO;2
 
86.
Muller, M.R., Middleton, J., 1994. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology 9, 151-157. https://doi.org/10.1007/BF0012....
 
87.
Murali, R.M., Kumar, P.D., 2015. Implications of sea level rise scenarios on land use/land cover classes of the coastal zones of Cochin, India. J. Environ. Manag. 148, 124-133. https://doi.org/10.1016/j.jenv....
 
88.
Nichol, J., 2009. An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogramm. Eng. Remote Sens. 75, 547-556. https://doi.org/10.14358/PERS.....
 
89.
Nichol, J.E., 1996. High-resolution surface temperature patterns related to urban morphology in a tropical city: a satellite-based study. J. Appl. Meteorol. 35, 135-146. https://doi.org/10.1175/1520-0...<0135:HRSTPR>2.0.CO;2.
 
90.
Omidvar, K., Fard, N., Abbasi, H., 2013. Detection of land use and vegetation changes in Yasuj city using remote sensing. Geography Regional Urban Planning 5, 111-126.
 
91.
Pal, S., Ziaul, S., 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egyptian J Remote Sensing Space Sci. 20, 125-145. https://doi.org/10.1016/j.ejrs....
 
92.
Pan, Z., Wang, G., Hu, Y., Cao, B., 2019. Characterizing urban redevelopment process by quantifying thermal dynamic and landscape analysis. Habitat Int. 86, 61-70. https://doi.org/10.1016/j.habi....
 
93.
Peng, C., Ming, T., Tao, Y., Peng, Z., 2015. Numerical analysis on the thermal environment of an old city district during urban renewal. Energy Buildings 89, 18-31. https://doi.org/10.1016/j.enbu....
 
94.
Piringer, M., Grimmond, C.S.B., Joffre, S.M., Mestayer, P., Middleton, D., Rotach, M., et al., 2002. Investigating the surface energy balance in urban areas-recent advances and future needs. Water, Air Soil Pollution: Focus 2, 1-16. https://doi.org/10.1007/978-94....
 
95.
Pramanik, M.K., 2017. Impacts of predicted sea level rise on land use/land cover categories of the adjacent coastal areas of Mumbai megacity, India. Environment, Development Sustainability 19, 1343-1366. https://doi.org/10.1007/s10668....
 
96.
Qiao, Z., Liu, L., Qin, Y., Xu, X., Wang, B., Liu, Z., 2020. The impact of urban renewal on land surface temperature changes: a case study in the main city of Guangzhou, China. Remote Sensing 12, 794. https://doi.org/10.3390/rs1205....
 
97.
Ranagalage, M., Estoque, R. C., Handayani, H. H., Zhang, X., Morimoto, T., Tadono, T., et al., 2018. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 10, 2366. https://doi.org/10.3390/su1007....
 
98.
Rao, P.K., 1972. Remote sensing of urban heat islands from an environmental satellite. Bulletin American Meteorological Society 53, 647-648.
 
99.
Rasul, A., Balzter, H., Ibrahim, G.R.F., Hameed, H.M., Wheeler, J., Adamu, B., et al., 2018. Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates. Land 7, 81. https://doi.org/10.3390/land70....
 
100.
Rousta, I., Mansourmoghaddam, M., Olafsson, H., Krzyszczak, J., Baranowski, P., Zhang, H., et al., 2022. Analysis of the recent trends in vegetation dynamics and its relationship with climatological factors using remote sensing data for Caspian Sea watersheds in Iran. Int. Agrophys. 36, 139-153. https://doi.org/10.31545/intag....
 
101.
Rousta, I., Olafsson, H., Moniruzzaman, M., Ardö, J., Zhang, H., Mushore, T. D., et al., 2020. The 2000-2017 drought risk assessment of the western and southwestern basins in Iran. Modeling Earth Systems Environ. 6, 1201-1221. https://doi.org/10.1007/s40808....
 
102.
Rousta, I., Sarif, M.O., Gupta, R.D., Olafsson, H., Ranagalage, M., Murayama, Y., et al., 2018. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of Metropolitan City Tehran (1988-2018). Sustainability 10, 4433. https://doi.org/10.3390/su1012....
 
103.
Ruijsink, S., 2015. Integrating Climate Change into City Development Strategies (CDS): Climate Change and Strategic Planning. Un-Habitat.
 
104.
Running, S.W., Loveland, T.R., Pierce, L.L., Nemani, R.R., Hunt Jr, E.R., 1995. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sensing Environment 51, 39-48. https://doi.org/10.1016/0034-4....
 
105.
Rushin, G., Stancil, C., Sun, M., Adams, S., Beling, P., 2017. Horse race analysis in credit card fraud-deep learning, logistic regression, and Gradient Boosted Tree. 2017 systems and information engineering design symposium (SIEDS), IEEE, 117-121. https://doi.org/10.1109/SIEDS.....
 
106.
Seto, K.C., Woodcock, C., Song, C., Huang, X., Lu, J., Kaufmann, R., 2002. Monitoring land-use change in the Pearl River Delta using Landsat TM. Int. J. Remote Sensing 23, 1985-2004. https://doi.org/10.1080/014311....
 
107.
Sexton, J.O., Urban, D.L., Donohue, M.J., Song, C., 2013. Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sensing Environ. 128, 246-258. https://doi.org/10.1016/j.rse.....
 
108.
Sharifi, Rasooly, Hejazi, Asadollah, M., Zadeh, R., Hashem, 2013. Land cover/ use changes detection by object-oriented processing satellite image dates (Case Study: Tabriz County). J. Geography Planning 17, 203-214.
 
109.
Shayegan, M., Alimohammadi, A., Mansourian, A., 2013. Multi-objective optimization of land use allocation using NSGA-II algorithm. Iranian Remote Sensing GIS.
 
110.
Sigrist, F., Hirnschall, C., 2019. Grabit: Gradient tree-boosted Tobit models for default prediction. J. Banking Finance 102, 177-192. https://doi.org/10.1016/j.jban....
 
111.
Smil, V., 1993. China's environmental crisis: Armonk. NY: ME Sharpe.
 
112.
Smil, V., 1995. Who will feed China? China Quarterly 143, 801-813. https://doi.org/10.1017/S03057....
 
113.
Snyder, W.C., Wan, Z., Zhang, Y., Feng, Y.-Z., 1998. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sensing 19, 2753-2774. https://doi.org/10.1080/014311....
 
114.
Sultana, S., Satyanarayana, A., 2018. Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: Impact of urbanization. Int. J. Remote Sensing 39, 6692-6730. https://doi.org/10.1080/014311....
 
115.
Tarpley, J., Schneider, S., Money, R., 1984. Global vegetation indices from the NOAA-7 meteorological satellite. J. Climate Appl. Meteorol. 23, 491-494. https://doi.org/10.1175/1520-0...<0491:GVIFTN>2.0.CO;2.
 
116.
Thompson, W.D., Walter, S.D., 1988. A reappraisal of the kappa coefficient. J. Clinical Epidemiology 41, 949-958. https://doi.org/10.1016/0895-4....
 
117.
Townshend, J.R., Justice, C., 1986. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 7, 1435-1445. https://doi.org/10.1080/014311....
 
118.
Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M., Kieu, H.V., 2017. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J.f Photogrammetry Remote Sens. 124, 119-132. https://doi.org/10.1016/j.ispr....
 
119.
Trefil, J., 2003. The nature of science: An AZ guide to the laws and principles governing our universe. Houghton Mifflin Harcourt.
 
120.
USGS, 2018. USGS EROS Archive - Landsat Archives - Landsat 8 OLI/TIRS Level-2 Data Products – Surface Reflectance. https://www.usgs.gov/centers/e....
 
121.
USGS, 2020. Landsat Collection 2 Level-2 Science Products. https://www.usgs.gov/landsat-m....
 
122.
Wang, R., Derdouri, A., Murayama, Y., 2018. Spatiotemporal simulation of future land use/cover change scenarios in the Tokyo metropolitan area. Sustainability 10, 2056. https://doi.org/10.3390/su1006....
 
123.
Weng, Q., Lu, D., Schubring, J., 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing Environ. 89, 467-483. https://doi.org/10.1016/j.rse.....
 
124.
Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., Zhao, W., 2015. Time‐lag effects of global vegetation responses to climate change. Global Change Biol. 21, 3520-3531. https://doi.org/10.1111/gcb.12....
 
125.
Wu, J., Zhong, B., Tian, S., Yang, A., Wu, J., 2019. Downscaling of urban land surface temperature based on multi-factor geographically weighted regression. IEEE J. Selected Topics Applied Earth Observations Remote Sens. 12, 2897-2911. https://doi.org/10.1109/JSTARS....
 
126.
Xiao, H., Weng, Q., 2007. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 85, 245-257. https://doi.org/10.1016/j.jenv....
 
127.
Zhang, R., Tang, C., Ma, S., Yuan, H., Gao, L., Fan, W., 2011. Using Markov chains to analyze changes in wetland trends in arid Yinchuan Plain, China. Mathematical Computer Modelling 54, 924-930. https://doi.org/10.1016/j.mcm.....
 
128.
Zhou, W., Cao, F., Wang, G., 2019. Effects of spatial pattern of forest vegetation on urban cooling in a compact megacity. Forests 10, 282. https://doi.org/10.3390/f10030....
 
129.
Zhou, X., Wang, Y.C., 2011. Dynamics of land surface temperature in response to land‐use/cover change. Geographical Res. 49, 23-36. https://doi.org/10.1111/j.1745....
 
130.
Ziaul, S., Pal, S., 2016. Image based surface temperature extraction and trend detection in an urban area of West Bengal, India. J. Environ. Geography 9, 13-25. https://doi.org/10.1515/jengeo....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top