RESEARCH PAPER
Evaluating vegetation dynamics in the Yangtze river basin in relation to climatological parameters using remote sensing data from 2001 to 2022
 
More details
Hide details
1
Forestry and Garden, Longde County Forestry Grassland Development Center, Debang Road, Liupanshan Str., Longde County, Ningxia, 756300, China
 
2
Garden Engineering, Ningxia Zefeng Construction Engineering Co., LTD., Ningxia Longde County Scholar World, 756300, China
 
3
Department of Geography, Yazd University, Yazd 8915818411, Iran
 
4
Institute for Atmospheric Sciences, Weather and Climate and Department of Physics, University of Iceland and Icelandic Meteorological Office (IMO), Bustadavegur 7, IS-108 Reykjavik, Iceland
 
5
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
 
 
Final revision date: 2024-08-09
 
 
Acceptance date: 2024-08-13
 
 
Publication date: 2024-10-17
 
 
Corresponding author
Iman Rousta   

Department of Geography, Yazd University, Assistant professor of climatology, Iran
 
 
Int. Agrophys. 2024, 38(4): 407-422
 
HIGHLIGHTS
  • A downward trend in VegC for classes between 0.2 and 0.5
  • An upward trend in denser vegetation (NDVI > 0.5) during the study period
  • A general upward trend in VegC across all three basins from 2001 to 2022
KEYWORDS
TOPICS
ABSTRACT
This study investigates the dynamics of vegetation cover in the Yangtze river basin, separated into three sub-basins: upper basin, middle basin, and lower basin, concerning temperature and precipitation changes. The variations in the normalized difference vegetation index, precipitation, and temperature over 22 years (2001-2022) were analyzed annually, seasonally, and monthly using remote sensing data. The relationship between normalized difference vegetation index changes and precipitation and temperature was evaluated using Kendall’s correlation. The findings reveal a significant correlation between vegetation, surface temperature, and precipitation in the Yangtze river basin. Additionally, a significant (at p-value = 0.05) downward trend of vegetation coverage in the entire basin was observed for the classes between 0.2 and 0.5 (indicating poor and moderate vegetation). Conversely, a significant (at p-value = 0.05) upward trend in the area covered by denser vegetation (normalized difference vegetation index exceeding 0.5) was observed during the studied period in the Yangtze river basin. The largest vegetation coverage area was observed in middle basin, while the lowest values were seen in upper basin in 2008, middle basin in 2001, and lower basin in 2005. The highest vegetation coverage area in all three basins was recorded in 2021. In general, a significant (at p-value = 0.01) upward trend in vegetation coverage was observed in all three basins between 2001 and 2022. Finally, the results demonstrate that temperature exhibits a stronger correlation with increased vegetation cover in the Yangtze river basin, compared to precipitation.
CONFLICT OF INTEREST
The Authors do not declare any conflict of interest.
 
REFERENCES (73)
1.
Angelini, I.M., Garstang, M., Davis, R.E., Hayden, B., Fitzjarrald, D.R., Legates, D.R., et al., 2011. On the coupling between vegetation and the atmosphere. Theoretical Appl. Climatol. 105, 243-261. https://doi.org/10.1007/s00704....
 
2.
Aronoff, S., 2004. Remote sensing for GIS managers. Environ-mental Systems Research, University of Minnesota, USA.
 
3.
Broge, N.H., Leblanc, E., 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing Environ. 76, 156-172. https://doi.org/10.1016/S0034-....
 
4.
Chen, X., Xie, D., Zhang, Z., Sharma, R.P., Chen, Q., Liu, Q., et al., 2023. Compatible biomass model with measurement error using airborne LiDAR data. Remote Sensing 15, 3546. https://doi.org/10.3390/rs1514....
 
5.
Cheng, P., Wu, L., Zhang, H., Zhou, J., 2024. Inclusion of root water absorption and reinforcement in upper bound limit stability analysis of vegetated slopes. Computers Geotechnics 169, 106227. https://doi.org/10.1016/j.comp....
 
6.
Cui, L., Wang, L., Qu, S., Singh, R.P., Lai, Z., Yao, R., 2019. Spatiotemporal extremes of temperature and precipitation during 1960-2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics. Theoretical Appl. Climatol. 136, 675-692. https://doi.org/10.1007/s00704....
 
7.
Cui, L., Wang, L., Singh, R.P., Lai, Z., Jiang, L., Yao, R., 2018. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Environ. Sci. Pollution Res. 25, 21867-21878. https://doi.org/10.1007/s11356....
 
8.
Curran, P., Wardley, N., 1985. Remote sensing in secondary school geography: the place of Landsat MSS. Geography 70, 237-240.
 
9.
Dall’olmo, G., Gitelson, A.A., Rundquist, D.C., 2003. Towards a unified approach for remote estimation of chlorophyll‐a in both terrestrial vegetation and turbid productive waters. Geophys. Res. Letters 30. https://doi.org/10.1029/2003GL....
 
10.
Dastorani, M., 2021. Assessing the Vulnerability of the Land Using the IDI Combination Model in Arid and Semi arid Regions (Khorasan Razavi). J. Arid Regions Geographics Studies 12, 78-90.
 
11.
Drori, R., Dan, H., Sprintsin, M., Sheffer, E., 2020. Precipitation-sensitive dynamic threshold: A new and simple method to detect and monitor forest and woody vegetation cover in sub-humid to arid areas. Remote Sensing 12, 1231. https://doi.org/10.3390/rs1208....
 
12.
Dutta, D., Kundu, A., Patel, N., Saha, S., Siddiqui, A., 2015. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egyptian J. Remote Sensing Space Sci. 18, 53-63. https://doi.org/10.1016/j.ejrs....
 
13.
Funk, C., Michaelsen, J., Marshall, M.T., 2012. Mapping recent decadal climate variations in precipitation and temperature across eastern Africa. Remote Sensing Drought: Innovative Monitoring Approaches 331, 331-355.
 
14.
Ghafarian Malamiri, H.R., Rousta, I., Olafsson, H., Zare, H., Zhang, H., 2018. Gap-filling of MODIS time series land surface temperature (LST) products using singular spectrum analysis (SSA). Atmosphere 9, 334. https://doi.org/10.3390/atmos9....
 
15.
Gou, Y., Jin, Z., Kou, P., Tao, Y., Xu, Q., Zhu, W., et al., 2024. Mechanisms of climate change impacts on vegetation and prediction of changes on the Loess Plateau, China. Environ. Earth Sci. 83, 234. https://doi.org/10.1007/s12665....
 
16.
Gu, X., Li, Y., Zuo, X., Bu, J., Yang, F., Yang, X., et al., 2024. Image compression-based DS-InSAR method for landslide identification and monitoring of alpine canyon region: a case study of Ahai Reservoir area in Jinsha River Basin. Landslides 1-17. https://doi.org/10.1007/s10346....
 
17.
Gu, Y., Brown, J.F., Verdin, J.P., Wardlow, B., 2007. A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Res. Letters 34. https://doi.org/10.1029/2006GL....
 
18.
Guo, L., Wu, S., Zhao, D., Yin, Y., Leng, G., Zhang, Q., 2014. NDVI-based vegetation change in Inner Mongolia from 1982 to 2006 and its relationship to climate at the biome scale. Advances in Meteorol. 2014, 1-12. https://doi.org/10.1155/2014/6....
 
19.
Hu, Y., Dao, R., Hu, Y., 2019. Vegetation change and driving factors: Contribution analysis in the loess plateau of China during 2000-2015. Sustainability 11, 1320. https://doi.org/10.3390/su1105....
 
20.
Kafarski, M., Majcher, J., Wilczek, A., Szypłowska, A., Lewandowski, A., Zackiewicz, A., et al., 2019. Penetration depth of a soil moisture profile probe working in time-domain transmission mode. Sensors 19, 5485. https://doi.org/10.3390/s19245....
 
21.
Kai-Feng, P., Wei-Guo, J., Peng, H., Chen-Xi, S., Xiang, Z., Ru-Lin, X., 2020. Spatiotemporal variation of vegetation coverage and its affecting factors in the Three river source National Park. Chinese J. Ecol. 39, 3388-3396.
 
22.
Kalpoma, K.A., Chowdhury, A., Arony, N.N., Nowshin, M., Kudoh, J.-I., 2019. New modis vegetation index for Boro rice model using 3d plot and K-NN: Bangladesh Haor region perspective. IGARSS 2019-2019 IEEE Int. Geosci. Remote Sensing Symp., IEEE 7322-7325. https://doi.org/10.1109/IGARSS....
 
23.
Katiraie Boroujerdy, P.S., 2016. Comparison of high-resolution gridded monthly satellite and ground-based precipitation data over Iran. Iranian J. Geophys. 7, 149-160.
 
24.
Kundu, A., Dwivedi, S., Dutta, D., 2016. Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arabian J. Geosci. 9, 1-15. https://doi.org/10.1007/s12517....
 
25.
Li, J., Zhao, Y., Chen, D., Zhao, P., Zhang, C., Wang, Y., 2024. The Quantitative Role of Moisture and Vertical Motion in Shaping Summer Heavy Rainfall over North China under Two Distinct Large-Scale Weather Patterns. J. Climate 37, 2655-2672. https://doi.org/10.1175/JCLI-D....
 
26.
Liang, H., Meng, Y., Ishii, K., 2022. The effect of agricultural greenhouse gas emissions reduction policies: evidence from the middle and lower basin of Yangtze River, China. Discover Sustain. 3, 43. https://doi.org/10.1007/s43621....
 
27.
Liu, C., Shan, Y., He, L., Li, F., Liu, X., Nepf, H., 2024. Plant morphology impacts bedload sediment transport. Geophys. Res. Letters 51, e2024GL108800. https://doi.org/10.1029/2024GL....
 
28.
Liu, J., Liu, S., Tang, X., Ding, Z., Ma, M., Yu, P., 2022. The response of land surface temperature changes to the vegetation dynamics in the Yangtze River Basin. Remote Sensing 14, 5093. https://doi.org/10.3390/rs1420....
 
29.
Luan, J., Liu, D., Zhang, L., Huang, Q., Feng, J., Lin, M., et al., 2018. Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000-2016. Proc. IAHS 379, 287-292. https://doi.org/10.5194/piahs-....
 
30.
Luo, Q., Bai, X., Zhao, C., Luo, G., Li, C., Ran, C., et al., 2024. Unexpected response of terrestrial carbon sink to rural depopulation in China. Sci. Total Environ. 174595. https://doi.org/10.1016/j.scit....
 
31.
Mahmood, S.A.R., Rousta, I., Mazidi, A., 2022. Investigating the sustainability of vegetation change trends using remote sensing (Case Study: Northern River Basin of Afghanistan). Geography Environ. Sustain. 12, 17-35.
 
32.
Majcher, J., Kafarski, M., Wilczek, A., Szypłowska, A., Lewandowski, A., Woszczyk, A., et al., 2021. Application of a dagger probe for soil dielectric permittivity measurement by TDR. Measurement 178, 109368. https://doi.org/10.1016/j.meas....
 
33.
Marj, A.F., Meijerink, A.M., 2011. Agricultural drought forecasting using satellite images, climate indices and artificial neural network. Int. J. Remote Sensing 32, 9707-9719. https://doi.org/10.1080/014311....
 
34.
Martínez, B., Gilabert, M.A., 2009. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing Environ. 113, 1823-1842. https://doi.org/10.1016/j.rse.....
 
35.
Olafsson, H., Rousta, I., 2021. Influence of atmospheric patterns and North Atlantic Oscillation (NAO) on vegetation dynamics in Iceland using Remote Sensing. Eur. J. Remote Sensing 54, 351-363. https://doi.org/10.1080/227972....
 
36.
Peterson, P., Funk, C.C., Landsfeld, M.F., Pedreros, D.H., Shukla, S., Husak, G.J., et al., 2015. The climate hazards group infrared precipitation with stations (CHIRPS) v2. 0 dataset: 35 year quasi-global precipitation estimates for drought monitoring. AGU Fall Meeting Abstracts, NH41D-05.
 
37.
Qu, S., Wang, L., Lin, A., Yu, D., Yuan, M., 2020. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecological Indicators 108, 105724. https://doi.org/10.1016/j.ecol....
 
38.
Qu, S., Wang, L., Lin, A., Zhu, H., Yuan, M., 2018. What drives the vegetation restoration in Yangtze River basin, China: climate change or anthropogenic factors? Ecological Indicators 90, 438-450. https://doi.org/10.1016/j.ecol....
 
39.
Rannow, S., Neubert, M., 2014. Managing protected areas in central and eastern Europe under climate change. Springer Nature https://doi.org/10.1007/978-94....
 
40.
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 351, 309.
 
41.
Rousta, I., Mansourmoghaddam, M., Olafsson, H., Krzyszczak, J., Baranowski, P., Zhang, H., et al., 2022. Analysis of the recent trends in vegetation dynamics and its relationship with climatological factors using remote sensing data for Caspian Sea watersheds in Iran. Int. Agrophys. 36, 139-153. https://doi.org/10.31545/intag....
 
42.
Running, S.W., Loveland, T.R., Pierce, L.L., Nemani, R.R., Hunt Jr, E.R., 1995. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sensing Environ. 51, 39-48.https://doi.org/10.1016/0034-4....
 
43.
Şahin, M., 2012. Modelling of air temperature using remote sensing and artificial neural network in Turkey. Advances Space Res. 50, 973-985. https://doi.org/10.1016/j.asr.....
 
44.
Şahin, M., Kaya, Y., Uyar, M., 2013. Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Advances Space Res. 51, 891-904. https://doi.org/10.1016/j.asr.....
 
45.
Şahin, M., Kaya, Y., Uyar, M., Yıldırım, S., 2014. Application of extreme learning machine for estimating solar radiation from satellite data. Int. J. Energy Res. 38, 205-212. https://doi.org/10.1002/er.303....
 
46.
Şenkal, O., 2010. Modeling of solar radiation using remote sensing and artificial neural network in Turkey. Energy 35, 4795-4801. https://doi.org/10.1016/j.ener....
 
47.
Sun, L., Wang, X., Zheng, Y., Wu, Z., Fu, L., 2024. Multiscale 3-d-2-d mixed cnn and lightweight attention-free transformer for hyperspectral and lidar classification. IEEE Trans. Geosci. Remote Sensing 62, 1-16. https://doi.org/10.1109/TGRS.2....
 
48.
Tang, X., Cui, Y., Li, N., Fu, Y., Liu, X., Run, Y., et al., 2020. Human activities enhance radiation forcing through surface albedo associated with vegetation in Beijing. Remote Sensing 12, 837. https://doi.org/10.3390/rs1205....
 
49.
Tucker, C.J., Choudhury, B.J., 1987. Satellite remote sensing of drought conditions. Remote Sensing Environ. 23, 243-251. https://doi.org/10.1016/0034-4....
 
50.
Wan, Z., 1999. MODIS Land-Surface Temperature Algorithm Basis Document (LST ATBD): version 3.3. http://modis. gsfc.nasa.gov/data/atbd.
 
51.
Wan, Z., Zhang, Y., Zhang, Q., Li, Z.-L. 2002. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing Environ. 83, 163-180. https://doi.org/10.1016/S0034-....
 
52.
Wang, Y., Quan, S., Tang, X., Hosono, T., Hao, Y., Tian, J., et al., 2024. Organic and inorganic carbon sinks reduce long‐term deep carbon emissions in the continental collision margin of the southern Tibetan Plateau: Implications for Cenozoic climate cooling. J. Geophys. Res.: Solid Earth 129, e2024JB028802. https://doi.org/10.1029/2024JB....
 
53.
Wu, Z., Dijkstra, P., Koch, G.W., Peñuelas, J., Hungate, B.A., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta‐analysis of experimental manipulation. Global Change Biol. 17, 927-942. https://doi.org/10.1111/j.1365....
 
54.
Xie, D., Huang, H., Feng, L., Sharma, R.P., Chen, Q., Liu, Q., et al., 2023. Aboveground biomass prediction of arid shrub-dominated community based on airborne Lidar through parametric and nonparametric methods. Remote Sensing 15, 3344. https://doi.org/10.3390/rs1513....
 
55.
Xu, J., Zhou, G., Su, S., Cao, Q., Tian, Z., 2022. The development of a rigorous model for bathymetric mapping from multispectral satellite-images. Remote Sensing 14, 2495. https://doi.org/10.3390/rs1410....
 
56.
Xu, L., Myneni, R., Chapin Iii, F., Callaghan, T.V., Pinzon, J., Tucker, C.J., et al., 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change 3, 581-586. https://doi.org/10.1038/nclima....
 
57.
Yin, G., Hu, Z., Chen, X., Tiyip, T., 2016. Vegetation dynamics and its response to climate change in Central Asia. J. Arid Land 8, 375-388. https://doi.org/10.1007/s40333....
 
58.
Yin, L., Wang, L., Li, T., Lu, S., Tian, J., Yin, Z., et al., 2023a. U-Net-LSTM: time series-enhanced lake boundary prediction model. Land 12, 1859. https://doi.org/10.3390/land12....
 
59.
Yin, L., Wang, L., Li, T., Lu, S., Yin, Z., Liu, X., et al., 2023b. U-Net-STN: A novel end-to-end lake boundary prediction model. Land 12, 1602. https://doi.org/10.3390/land12....
 
60.
Yu, B., Zhou, X., 2024. Land finance and urban Sprawl: Evidence from prefecture-level cities in China. Habitat Int. 148, 103074. https://doi.org/10.1016/j.habi....
 
61.
Yuan, Z., Xu, J., Chen, J., Wang, Y., Yin, J., 2022. EVI indicated spatial-temporal variations in vegetation and their responses to climatic and anthropogenic factors in the Chinese Mainland since 2000s. J. Environ. Informatics 40.
 
62.
Zhang, D., Wu, F., Fang, Y., Lu, N., 2020a. Spatial and temporal variation Trend Analysis of vegetation cover in Urban agglomeration of Pearl River Delta from 2000 to 2015. IOP Conf. Series: Earth Environ. Sci., IOP Publishing 012028. https://doi.org/10.1088/1755-1....
 
63.
Zhang, Y.-X., Wang, Y.-K., Fu, B., Dixit, A.M., Chaudhary, S., Wang, S., 2020b. Impact of climatic factors on vegetation dynamics in the upper Yangtze River basin in China. J. Mountain Sci. 17, 1235-1250. https://doi.org/10.1007/s11629....
 
64.
Zhang, Y., Liang, S., Xiao, Z., 2020c. Observed vegetation greening and its relationships with cropland changes and climate in China. Land 9, 274. https://doi.org/10.3390/land90....
 
65.
Zhang, J., Wang, S., Huang, J., He, Y., Ren, Y., 2023. The precipitation‐recycling process enhanced extreme precipitation in Xinjiang, China. Geophysical Res. Letters 50, e2023GL104324. https://doi.org/10.1029/2023GL....
 
66.
Zhang, K., Li, Y., Yu, Z., Yang, T., Xu, J., Chao, L., Ni, J., Wang, L., Gao, Y., Hu, Y., 2022. Xin’anjiang nested experimental watershed (XAJ-NEW) for understanding multiscale water cycle: scientific objectives and experimental design. Engineering 18, 207-217. https://doi.org/10.1016/j.eng.....
 
67.
Zhang, X., Jin, X., 2021. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China. Ecological Indicators 131, 108223. https://doi.org/10.1016/j.ecol....
 
68.
Zhang, Y., Gao, J., Liu, L., Wang, Z., Ding, M., Yang, X., 2013. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Global Planetary Change 108, 139-148. https://doi.org/10.1016/j.glop....
 
69.
Zhao, Y., Li, J., Tian, Y., Li, J., 2024. Distinguish extreme precipitation mechanisms associated with atmospheric river and non-atmospheric river in the Lower Yangtze River Basin. J. Climate. https://doi.org/10.1175/JCLI-D....
 
70.
Zhou, G., Lin, G., Liu, Z., Zhou, X., Li, W., Li, X., Deng, R., 2023a. An optical system for suppression of laser echo energy from the water surface on single-band bathymetric LiDAR. Optics Lasers Eng. 163, 107468. https://doi.org/10.1016/j.optl....
 
71.
Zhou, G., Zhang, H., Xu, C., Zhou, X., Liu, Z., Zhao, D., Lin, J., Wu, G., 2023b. A real-time data acquisition system for single-band bathymetric LiDAR. IEEE Trans. Geosci. Remote Sensing 61, 1-21. https://doi.org/10.1109/TGRS.2....
 
72.
Zhou, Y., Peng, J., Zhang, Z., Li, Y., Cheng, L., 2024. Evaluation and obstacle factors diagnosis of Agriculture Green Development level in China’s Yangtze River Basin based on the DPSIR framework. Environ. Develop. Sustain. https://doi.org/10.1007/s10668....
 
73.
Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., 2016. Greening of the Earth and its drivers. Nature Climate Change 6, 791-795. https://doi.org/10.1038/nclima....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top