Forcing variables in simulation of transpiration of water stressed plants determined by principal component analysis
 
More details
Hide details
1
Department of Crop Science, Agricultural Meteorology Group, Federal University of Santa Maria, Av. Roraima, 1000, building 77, 97105-900, Santa Maria (RS), Brazil
 
2
Soil Physics Laboratory, Centre for Nuclear Energy in Agriculture, University of São Paulo, P.O. Box 96, 13405-900, Piracicaba (SP), Brazil
 
3
Soil Physics and Land Management Group, Department of Environmental Science, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
 
 
Publication date: 2016-08-25
 
 
Int. Agrophys. 2016, 30(4): 431-445
 
KEYWORDS
ABSTRACT
To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top