RESEARCH PAPER
Implication of organic farming practice in changes in physical-chemical properties of plough pan layer in paddy soils
More details
Hide details
1
Faculty of Agriculture, Department of Soil Sciences, Gadjah Mada University, Jl. Flora Bulaksumur, 55281, Yogyakarta, Indonesia
2
Agrotechnology, STIPER Agriculture University of Yogyakarta, Jl. Nangka II, Maguwoharjo, Sleman, 55281, Yogyakarta, Indonesia
3
Soil Sciences, Universitas Gadjah Mada, Jl. Flora Bulaksumur, 55281, Yogyakarta, Indonesia
Final revision date: 2024-11-06
Acceptance date: 2024-11-13
Publication date: 2025-01-16
Corresponding author
Eko Hanudin
Faculty of Agriculture, Department of Soil Sciences, Gadjah Mada University, Jl. Flora Bulaksumur, 55281, Yogyakarta, Indonesia
Int. Agrophys. 2025, 39(1): 61-72
HIGHLIGHTS
- Organic farming (OF) boosts the root growth space of rice plants
- Humic substance promote dissolving oxides compound in the plow pan layer
- Fe/Al-oxide-humate contributes to shifhting down the plow pan layer
- OF boosts Fe/Mn-humate by 4.74 and 2.73 times compared to conventional systems
KEYWORDS
TOPICS
ABSTRACT
The impacts of organic farming practices on the physical-chemical properties of the plough pan layer in paddy soils are still not well-documented. This study was conducted by making nine soil profiles from three farming systems, namely conventional, semi-organic, and organic fields. The results revealed that the formation of the plough pan layer resulted in an increase in soil penetration resistance, modulus of rupture, and bulk density, while soil porosity and soil permeability decreased. The clay in the layer was composed of kaolinite, nacrite, dickite, with dissolved Fe>Mn>Al. After 10 years of organic farming practice, there was an increase in humic acid, fulvic acid, CEC, Fe-humic, Mn-Humic, soil porosity, and topsoil thickness, while the thickness of plough pan, modulus of rupture, and soil penetration decreased. The Fe-humic and Mn-humic content increased by 4.74 and 2.73 times, respectively, compared to the conventional system. This indicates that humic compounds derived from organic fertilizers play a crucial role in the complexation and dissolution processes of mineral components, resulting in improved soil physical and chemical properties.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest regarding the publication of this paper.
REFERENCES (55)
1.
Alomar, T., Qiblawey, H., Almomani, F., Al-Raoush, R.I., Han, D.S., Ahmad, N.M., 2023. Recent advances on humic acid removal from wastewater using adsorption process. J. Water Process Eng. 53, 103679.
https://doi.org/10.1016/j.jwpe....
2.
Al Viandari, N., Wihardjaka, A., Pulunggono, H., Suwardi, S., 2022. Sustainable development strategies of rainfed paddy fields in Central Java, Indonesia: A Review. Caraka Tani: J. Sust. Agric. 37(2), 275-288.
https://doi.org/10.20961/carak....
3.
Ampong, K., Thilakaranthna, M., Gorim, L., 2022. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 4: 848621.
https://doi.org/10.3389/fagro.....
4.
Arunrat, N., Kongsurakan, P., Sereenonchai, S., Hatano, R., 2020. Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review. Agronomy 10, 1061.
https://doi.org/10.3390/agrono....
5.
Arunrat, N., Sereenonchai, S., Wang, C., 2021. Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand. J. Environ. Manag. 289, 112458.
https://doi.org/10.1016/j.jenv....
6.
Arunrat, N., Sereenonchai, S., Chaowiwat, W., Wang, C., Hatano, R., 2022. Carbon, nitrogen and water footprints of organic rice and conventional rice production over 4 years of cultivation: A Case Study in the Lower North of Thailand. Agronomy 12, 2, 380.
https://doi.org/10.3390/agrono....
7.
Antony, D., Collins, C., Clark, J., Sizmur, T., 2022. Soil organic matter storage in temperate lowland arable, grassland and woodland topsoil and subsoil. Soil Use Manag. 38. 1532-1546.
https://doi.org/10.1111/sum.12....
8.
Aung, M., Masuda, H., 2020. How does rice defend against excess iron?: Physiological and Molecular Mechanisms. Frontiers Plant Sci. 11,
https://doi.org/10.3389/fpls.2....
9.
Bayer, C., Martin-Neto, L., Mielniczuk, J., Ceretta, C., 2000. Effect of no-till cropping systems on soil organic matter in a sandy clay loam Acrisol from Southern Brazil monitored by electron spin resonance and nuclear magnetic resonance. Soil Till. Res. 53, 95-104.
https://doi.org/10.1016/S0167-....
10.
BPSI Tanah dan Pupuk, 2023. Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Petunjuk Teknis Edisi 3. Balai Pengujian Standar Instrumen Tanah dan Pupuk. Kementrian Pertanian. Jakarta.
11.
Chen, K., Peng, J., Li, J., Yang, Q., Zhan, X., Liu, N., et al., 2020. Stabilization of soil aggregate and organic matter under the application of three organic resources and biochar-based compound fertilizer. J. Soils Sediments 1-11.
https://doi.org/10.1007/s11368....
12.
Churchman G.J., Lowe, D.J., 2012. Alteration, formation, and occurrence of minerals in soils. In: Huang, P.M.; Li Y.; Sumner, M.E. (Editors). “Handbook of Soil Sciences”. Properties and Processes. CRC Press (Taylor and Francis), Boca Raton FL, 20.1-20.72.
13.
Conklin, A.R., 2005. Introduction to Soil Chemistry: Analysis and Instrumentation. John Wiley and Sons Inc. New Jersey.
14.
Du, Y., Cui, B., Zhang, Q., Wang, Z., Sun, J., Niu, W., 2020. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 193, 104617.
https://doi.org/10.1016/j.cate....
15.
Eickhorst, T., Tippkötter, R., 2009. Management-induced structural dynamics in paddy soils of south east China simulated in microcosms. Soil Till. Res. 102(2), 168-178.
https://doi.org/10.1016/j.stil....
16.
Grybos, M., Davranche, M., Gruau, G., Petitjean, P., Pédrot, M., 2009. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154, 13-19.
https://doi.org/10.1016/J.GEOD....
17.
Hayes, M.H.B. 1984. Structure of Humic Substances. In: Organic Matter and Rice. International Rice Research Institute. Los Banos, Filipina.
18.
Hayes, M., Swift, R., 2020. Vindication of humic substances as a key component of organic matter in soil and water. Advances Agronomy 163, 1-37.
https://doi.org/10.1016/bs.agr....
19.
Hidayat, R., Partasasmita, R., Iskandar, J., Gunawan, B., 2019. Changes in paddy field management in Sindang Hamlet, Rancakalong Village, Sumedang District, West Java, Indonesia. Biodiversitas J. Biolog. Diversity
https://doi.org/10.13057/biodi....
20.
Islam, M., Price, A., Hallett, P., 2021. Contrasting ability of deep and shallow rooting rice genotypes to grow through plough pans containing simulated biopores and cracks. Plant Soil 467, 515-530.
https://doi.org/10.1007/s11104....
21.
Juo, A.S.R., Moorman, R.F., Maduakor, H.L., 1974. Forms and pedogenetic distribution of extractable iron and aluminum in selected soils in Nigeria. Geoderma 11, 167-179.
https://doi.org/10.1016/0016-7....
22.
Kautsar, V., Cheng, W., Tawaraya, K., Yamada, S., Toriyama, K., and Kobayashi, K., 2019. Carbon and nitrogen stocks and their mineralization potentials are higher under organic than conventional farming practices in Japanese Andosols. Soil Sci. Plant Nutrition 66(1), 144-151.
https://doi.org/10.1080/003807....
23.
Kögel‐Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., et al., 2010. Biogeochemistry of paddy soils. Geoderma 157(1-2), 1-14.
https://doi.org/10.1016/j.geod....
24.
Kölbl, A., Schad, P., Jahn, R., Amelung, W., Bannert, A., Cao, Z., Fiedler, S., Kalbitz, K., Lehndorff, E., Müller-Niggemann, C., Schloter, M., Schwark, L., Vogelsang, V., Wissing, L., and Kögel‐Knabner, I. 2014. Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma 228-229, 67-89.
https://doi.org/10.1016/J.GEOD....
25.
Kurniati, Sudarsono, Suwardi, 2016. Characterization of Several Paddy Soil Types in Bogor, West Java, Indonesia. J. Tropical Soils 21(1): 27-32.
https://doi.org/10.5400/JTS.20....
26.
Li, S., Chen, S., Wang, M., Lei, X., Zheng, H., Sun, X., et al., 2021. Redistribution of iron oxides in aggregates induced by pe + pH variation alters Cd availability in paddy soils. Sci. Total Environ. 752, 142164 .
https://doi.org/10.1016/j.scit....
27.
Lu, M., Zhang, Y., Su, Z., Jiang, T., 2020. The NMR and spectral study on the structure of molecular size-fractionated lignite humic acid. Resources, Environment and Sustainability. 2. 100004.
https://doi.org/10.1016/j.rese....
29.
Liu, X., Zhao, X., Lv, J., 2023. Molecular characterization of size-fractionated humic acids derived from lignite and its activation of soil legacy Phosphorus and Lactuca sativa growth-promoting performances. ACS Omega 8, 6838- 6846.
https://doi.org/10.1021/acsome....
30.
Ma, L., Yang, L., Xia, L., Shen, M., Yin, S., Li, Y., 2011. Long-Term Effects of Inorganic and Organic Amendments on Organic Carbon in a Paddy Soil of the Taihu Lake Region, China. Pedosphere 21, 186-196.
https://doi.org/10.1016/S1002-....
31.
Melo, V., Oliveira, J., Batista, A., Cherobim, V., Favaretto, N., 2020. Goethite and hematite in bichromic soil profiles of southern Brazil: Xanthization or yellowing process. Catena 188, 104445.
https://doi.org/10.1016/j.cate....
32.
Moormann, F.R., Van Breemen, N., 1978. Rice: Soil, Water, Land. Int. Rice Research Institute, Los Baños, Philippines.
33.
Oberthur, T., White, P.F., Reyes, R.T., Dobermann, A., Sovuthy, P., Rickman, J.F., 1997. Major Soils of the Rice-Growing Areas. In: The Soils Used for Rice Production in Cambodia: A Manual for their Identification and Management. Cambodia-IRRI-Australia Project. International Rice Research Institute, Los Baños, Philippines.
34.
Podder, M., Akter, M., Saifullah, A., Roy, S., 2012. Impacts of plough pan on physical and chemical properties of soil. J. Environ. Sci. Natural Res. 5(1), 289-294.
https://doi.org/10.3329/JESNR.....
35.
Ponnamperuma, F.N., 1985. Chemical Kinetics of Wetland Rice Soils Relative to Soil Fertility. Dalam: Wetland Soils - Characterization, classification and utilization (Proc.). Int. Rice Res. Institute, Los Baños, Philippines.
36.
Pramanik, P., Kim, P., 2014. Fractionation and characterization of humic acids from organic amended rice paddy soils. Sci. Total Environ. 466-467, 952-956.
https://doi.org/10.1016/j.scit....
37.
Rahman, A., Amin, M., 2023. Soil hydraulic properties and field-scale hydrology as affected by land-management options. Sains Tanah. J. Soil Sci. Agroclimat.
https://doi.org/10.20961/stjss....
38.
Rahman, A., Baharlouei, P., Koh, E.H.Y., Pirvu, D.G., Rehmani, R., Arcos, M., Puri, S.A. 2024. Comprehensive Analysis of Organic Food: Evaluating Nutritional Value and Impact on Human Health. Foods 13, 208.
https://doi.org/10.3390/foods1....
39.
Rowell, D.L., 1994. Soil Science; Methods and Application. Harlow, Longman Scientific Technical.
40.
Sander, T., Gerke, H., Rogasik, H., 2008. Assessment of Chinese paddy-soil structure using X-ray computed tomography. Geoderma 145, 303-314.
https://doi.org/10.1016/J.GEOD....
41.
Saygin, F., Alaboz, P., Dengiz, O., Senol, H., 2023. Effect of organic waste applications on soil aggregation and soil organic carbon fractions. Communications Soil Sci. Plant Analysis 54, 1644-1656.
https://doi.org/10.1080/001036....
43.
Shinozuka, T., Shibata, M., Yamaguchi, T., 2004. Molecular weight characterization of humic substances by MALDI-TOF-MS. J. Mass Spectrometry Soc. Japan 52(1), 29-32.
https://doi.org/10.5702/MASSSP....
44.
Syamsiyah, J., Ariyanto, D., Herawati, A., Herdiansyah, G., Dwisetio, P., 2023. Rice paddy field on Gentungan, Karanganyar: Soil C humic acid, fulvic acid, and stock as affected by period of organic practices. IOP Conference Series: Earth Environ. Sci. 1165.
https://doi.org/10.1088/1755-1....
45.
Trouse, A.C., 1979. Soil Physical Characteristics and Root Growth. In: Soil Physical Properties and Crop Production in the Tropics. Editor: R. Lal D.J. Greenland. John Wiley and Sons.
46.
USDA, 2014. Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 51.Version 2.
47.
USDA, 2016. National Soil Survey Handbook. Natural Resources Conservation Service. United States Department of Agriculture.
48.
Van Reeuwijk, L.P., 1993. Procedures for Soil Analysis. 4th Ed. Technical Paper, Wangeningen, International Soil Reference and Information Centre.
49.
Velasco, M.I., Campitelli, P.A., Ceppi, S.B., Havel, J., 2004. Analysis of humic acid from compost of urban wastes and soil by fluorescence spectroscopy. Agriscientia 21(1), 31 -38.
50.
Wei, L., Zhu, Z., Razavi, B., Xiao, M., Dorodnikov, M., Fan, L., et al., 2022. Visualization and quantification of carbon “rusty sink” by rice root iron plaque: Mechanisms, functions, and global implications. Global Change Biol. 28, 6711-6727.
https://doi.org/10.1111/gcb.16....
51.
Wissing, L., Kölbl, A., Häusler, W., Schad, P., Cao, Z., Kögel‐Knabner, I., 2013. Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. Soil Till. Res. 126, 60-71.
https://doi.org/10.1016/J.STIL....
52.
Shi, X., Qin, T., Yan, D., Tian, F., Wang, H., 2021. A meta-analysis on effects of root development on soil hydraulic properties. Geoderma 403, 115363.
https://doi.org/10.1016/J.GEOD....
53.
Yoshida, S., 1981. Fundamentals of rice crop science. International Rice Research Institute. Los Baños, Philippines.
54.
Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T., et al., 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79, 117-161.
https://doi.org/10.1016/S0016-....
55.
Zhu, X., Liu, J., Li, L., Zhen, G., Lu, X., Zhang, J., et al., 2023. Prospects for humic acids treatment and recovery in wastewater: A review. Chemosphere 312, 137193.
https://doi.org/10.1016/j.chem....