RESEARCH PAPER
Luvisol soil macroaggregates under the influence of conventional, strip-till, and reduced tillage practice
 
More details
Hide details
1
Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology in Bydgoszcz, Bernardyńska 6/8, 85-029 Bydgoszcz, Poland
 
2
Department of Agronomy, Bydgoszcz University of Science and Technology in Bydgoszcz, Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
 
 
Final revision date: 2024-05-08
 
 
Acceptance date: 2024-05-13
 
 
Publication date: 2024-07-29
 
 
Corresponding author
Piotr Paweł Wojewódzki   

Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology in Bydgoszcz, Bernardyńska 6/8, 85-029, Bydgoszcz, Poland
 
 
Int. Agrophys. 2024, 38(3): 311-324
 
HIGHLIGHTS
  • Cultivation systems with reduced tillage promote developing soil macroaggregates.
  • The smaller size of soil aggregates the higher their stability.
  • The reduced tillage effect is higher content of organic carbon in soil aggregates.
  • There is positive influence of organic matter on the soil aggregates stability.
KEYWORDS
TOPICS
ABSTRACT
The study evaluated the influence of the tillage system no-till (RT), strip-till (ST-OP), conventional till on the stability and distribution of soil aggregates as well as the relationship between the size-classes of soil aggregates and the content and quality of organic matter. The soil was sampled in a field experiment from the depth of 0-10 and 10-20 cm. The analyses concerned determination of carbon and nitrogen content, humus fractions, and soil aggregate size distribution. The obtained fractions of aggregates were analyzed for total organic carbon and total nitrogen content and stability. The results demonstrated that, regardless of the cultivation method, the contribution of particular size-classes of aggregates in the analyzed Luvisol was similar – large macroaggregates (>2 mm) 43-49%, small macroaggregates (2-0.75 mm) 7-8%, and the fraction <0.75 mm 44-49%. The soil aggregates from the 0-10 cm layer of ST-OP and RT were characterized by higher total organic carbon content in comparison to conventional till. Reduced tillage is beneficial for creating more stable structures of soil aggregates, especially in the top soil layer. The stability of soil aggregates positively correlate with total organic carbon content in the soil and parameters describing soil fertility, organic matter stability, and carbon sequestration.
CONFLICT OF INTEREST
The Authors do not declare any conflict of interest.
REFERENCES (63)
1.
Al-Kaisi, M.M., Douelle, A., Kwaw-Mensah, D., 2014. Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. J. Soil Water Conserv. 69, 574-580. https://doi.org/10.2489/jswc.6....
 
2.
Bartlová, J., Badalíková, B., Pospíšilová, L., Pokorný, E., Šarapatka, B., 2015. Water stability of soil aggregates in different systems of tillage. Soil Water Res. 10, 147-154. https://doi.org/10.17221/132/2....
 
3.
Bipfubusa, M., Angers, D.A., N’Dayegamiye, A., Antoun, H., 2008. Soil aggregation and biochemical properties following the application of fresh and composted organic amendments. Soil Sci. Soc. Am. J. 72, 160-166. https://doi.org/10.2136/sssaj2....
 
4.
Blanco-Canqui, H., Lal, R., 2004. Mechanisms of Carbon Sequestration in Soil Aggregates. Crit. Rev. Plant Sci. 23, 481-504. https://doi.org/10.1080/073526....
 
5.
Bossuyt, H., Six, J., Hendrix, P.F., 2005. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 37, 251-258. https://doi.org/10.1016/j.soil....
 
6.
Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma 124, 3-22. https://doi.org/10.1016/j.geod....
 
7.
Busari, M.A., Kukal, S.S., Kaur, A., Bhatt, R., Dulazi, A.A., 2015. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 3, 119-129. https://doi.org/10.1016/j.iswc....
 
8.
Cambardella, C.A., Elliott, E.T., 1993. Carbon and Nitrogen Distribution in Aggregates from Cultivated and Native Grassland Soils. Soil Sci. Soc. Am. J. 57, 1071-1076. https://doi.org/10.2136/sssaj1....
 
9.
Canalli, L.B.D.S., Santos, J.B.D., Benassi, D.A., Francisco, A.L.O.D., Benassi, C., Aguiar, A.N.D., Cordeiro, E., Mendes, R.S., 2020. Soil Carbon and Structural Quality in Crop Rotations under No-tillage System. Braz. Arch. Biol. Technol. 63, e20190603. https://doi.org/10.1590/1678-4....
 
10.
Cao, Z., Wang, Y., Li, J., Zhang, J., He, N., 2016. Soil organic carbon contents, aggregate stability, and humic acid composition in different alpine grasslands in Qinghai-Tibet Plateau. J. Mt. Sci. 13, 2015-2027. https://doi.org/10.1007/s11629....
 
11.
Castro Filho, C., Lourenço, A., De F. Guimarães, M., Fonseca, I.C.B., 2002. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil Till. Res. 65, 45-51. https://doi.org/10.1016/S0167-....
 
12.
Chantigny, M.H., 2003. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma, Ecological aspects of dissolved organic matter in soils 113, 357-380. https://doi.org/10.1016/S0016-....
 
13.
Chen, H., Hou, R., Gong, Y., Li, H., Fan, M., Kuzyakov, Y., 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Till. Res. 106, 85-94. https://doi.org/10.1016/j.stil....
 
14.
Cheng, M., Xiang, Y., Xue, Z., An, S., Darboux, F., 2015. Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena 124, 77-84. https://doi.org/10.1016/j.cate....
 
15.
Da Silva Rodrigues Pinto, L.A., De Lima, S.S., Da Silva, C.F., Da Mota Gonçalves, R.G., De Sousa Morais, I., Ferreira, R., Da Silva Junior, W.F., Torres, J.L.R., Pereira, M.G., 2022. Soil quality indicators in conventional and conservation tillage systems in the Brazilian Cerrado. Environ. Earth Sci. 81, 306. https://doi.org/10.1007/s12665....
 
16.
Debska, B., Jaskulska, I., Jaskulski, D., 2020. Method of tillage with the factor determining the quality of organic matter. Agronomy 10, 1250. https://doi.org/10.3390/agrono....
 
17.
Debska, B., Kotwica, K., Banach-Szott, M., Spychaj-Fabisiak, E., Tobiašová, E., 2022. Soil fertility improvement and carbon sequestration through exogenous organic matter and biostimulant application. Agriculture 12, 1478. https://doi.org/10.3390/agricu....
 
18.
Dębska, B., Długosz, J., Piotrowska-Długosz, A., Banach-Szott, M., 2016. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration – results from a field-scale study. J. Soils Sediments 16, 2335-2343. https://doi.org/10.1007/s11368....
 
19.
Dębska, B., Drąg, M., Tobiasova, E., 2012. Effect of post-harvest residue of maize, rapeseed, and sunflower on humic acids properties in various soils. Pol. J. Environ. Stud. 21.
 
20.
Domingo-Olivé, F., Bosch-Serra, À.D., Yagüe, M.R., Poch, R.M., Boixadera, J., 2016. Long term application of dairy cattle manure and pig slurry to winter cereals improves soil quality. Nutr. Cycl. Agroecosystems 104, 39-51. https://doi.org/10.1007/s10705....
 
21.
Friedrich, T., Derpsch, R., Kassam, A., 2011. Global overview of the spread of conservation agriculture. In: Proceedings from the 5th World Congress on Conservation Agriculture, Brisbane, Australia, pp. 26-30.
 
22.
Gautam, A., Guzman, J., Kovacs, P., Kumar, S., 2022. Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Arch. Agron. Soil Sci. 68, 1261-1273. https://doi.org/10.1080/036503....
 
23.
Guimarães, D.V., Gonzaga, M.I.S., Da Silva, T.O., Da Silva, T.L., Da Silva Dias, N., Matias, M.I.S., 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Till. Res. 126, 177-182. https://doi.org/10.1016/j.stil....
 
24.
Haddaway, N.R., Hedlund, K., Jackson, L.E., Kätterer, T., Lugato, E., Thomsen, I.K., Jørgensen, H.B., Isberg, P.-E., 2017. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 6, 30. https://doi.org/10.1186/s13750....
 
25.
Hayatu, N.G., Liu, Y., Han, T., Daba, N.A., Zhang, L., Shen, Z., Li, J., Muazu, H., Lamlom, S.F., Zhang, H., 2023. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice-rice cropping system. J. Integr. Agric. 22, 2848-2864. https://doi.org/10.1016/j.jia.....
 
26.
Jaskulska, I., Romaneckas, K., Jaskulski, D., Wojewódzki, P., 2020. A strip-till one-pass system as a component of conservation agriculture. Agronomy 10, 2015. https://doi.org/10.3390/agrono....
 
27.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., Matzner, E., 2000. Controls on the dynamics of dissolved organic matter in soils: A Review. Soil Sci. 165, 277.
 
28.
Kassam, A., Friedrich, T., Derpsch, R., 2019. Global spread of conservation agriculture. Int. J. Environ. Stud. 76, 29-51. https://doi.org/10.1080/002072....
 
29.
Khan, F.U., Khan, A.A., Li, K., Xu, X., Adnan, M., Fahad, S., Ahmad, R., Khan, M.A., Nawaz, T., Zaman, F., 2022. Influences of long-term crop cultivation and fertilizer management on soil aggregates stability and fertility in the loess plateau, Northern China. J. Soil Sci. Plant Nutr. 22, 1446-1457. https://doi.org/10.1007/s42729....
 
30.
Kholodov, V.A., Yaroslavtseva, N.V., Farkhodov, Yu.R., Belobrov, V.P., Yudin, S.A., Aydiev, A.Ya., Lazarev, V.I., Frid, A.S., 2019. Changes in the ratio of aggregate fractions in humus horizons of chernozems in response to the type of their use. Eurasian Soil Sci. 52, 162-170. https://doi.org/10.1134/S10642....
 
31.
Laufer, D., Loibl, B., Märländer, B., Koch, H.-J., 2016. Soil erosion and surface runoff under strip tillage for sugar beet (Beta vulgaris L.) in Central Europe. Soil Till. Res. 162, 1-7. https://doi.org/10.1016/j.stil....
 
32.
Li, K., Hao, Z., Chen, L., Sha, Y., Wang, E., Sui, X., Mi, G., 2023. Conservation strip-till modifies rhizosphere ammonia-oxidizing archaea and bacteria, increases nitrate accumulation and promotes maize growth at grain filling stage. Soil Till. Res. 234, 105821. https://doi.org/10.1016/j.stil....
 
33.
Lützow, M.V., Kögel‐Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 57, 426-445. https://doi.org/10.1111/j.1365....
 
34.
Martens, D.A., 2000. Management and crop residue influence soil aggregate stability. J. Environ. Qual. 29, 723-727. https://doi.org/10.2134/jeq200....
 
35.
Mikha, M.M., Green, T.R., Untiedt, T.J., Hergret, G.W., 2024. Land management affects soil structural stability: Multi-index principal component analyses of treatment interactions. Soil Till. Res. 235, 105890. https://doi.org/10.1016/j.stil....
 
36.
Morris, N.L., Miller, P.C.H., J.H.Orson, Froud-Williams, R.J., 2010. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment – A review. Soil Till. Res. 108, 1-15. https://doi.org/10.1016/j.stil....
 
37.
Niewczas, J., 2003. Index of soil aggregates stability as linear function value of transition matrix elements. Soil Till. Res. 70, 121-130. https://doi.org/10.1016/S0167-....
 
38.
Oades, J.M., 1984. Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76, 319-337. https://doi.org/10.1007/BF0220....
 
39.
Oades, J.M., Waters, A.G., 1991. Aggregate hierarchy in soils. Soil Res. 29, 815-828. https://doi.org/10.1071/sr9910....
 
40.
Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633-1644. https://doi.org/10.5194/hess-1....
 
41.
Powlson, D.S., Bhogal, A., Chambers, B.J., Coleman, K., Macdonald, A.J., Goulding, K.W.T., Whitmore, A.P., 2012. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agric. Ecosyst. Environ. 146, 23-33. https://doi.org/10.1016/j.agee....
 
42.
Reicosky, D.C., 2015. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 70, 103A-108A. https://doi.org/10.2489/jswc.7....
 
43.
Řezáčová, V., Czakó, A., Stehlík, M., Mayerová, M., Šimon, T., Smatanová, M., Madaras, M., 2021. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Sci. Rep. 11, 12548. https://doi.org/10.1038/s41598....
 
44.
Si, P., Liu, E., He, W., Sun, Z., Dong, W., Yan, C., Zhang, Y., 2018. Effect of no-tillage with straw mulch and conventional tillage on soil organic carbon pools in Northern China. Arch. Agron. Soil Sci. 64, 398-408. https://doi.org/10.1080/036503....
 
45.
Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155-176. https://doi.org/10.1023/A:1016....
 
46.
Six, J., Elliott, E.T., Paustian, K., 2000. Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 64, 1042-1049. https://doi.org/10.2136/sssaj2....
 
47.
Six, J., Elliott, E.T., Paustian, K., 1999. Aggregate and soil organic matter dynamics under conventional and no‐tillage systems. Soil Sci. Soc. Am. J. 63, 1350-1358. https://doi.org/10.2136/sssaj1....
 
48.
Strickland, T.C., Scully, B.T., Hubbard, R.K., Sullivan, D.G., Abdo, Z., Savabi, M.R., Lee, R.D., Olson, D.M., Hawkins, G.L., 2015. Effect of conservation practices on soil carbon and nitrogen accretion and crop yield in a corn production system in the southeastern coastal plain, United States. J. Soil Water Conserv. 70, 170-181. https://doi.org/10.2489/jswc.7....
 
49.
Tobiašová, E., 2011. The effect of organic matter on the structure of soils of different land uses. Soil Till. Res. 114, 183-192. https://doi.org/10.1016/j.stil....
 
50.
Volikov, A.B., Kholodov, V.A., Kulikova, N.A., Philippova, O.I., Ponomarenko, S.A., Lasareva, E.V., Parfyonova, A.M., Hatfield, K., Perminova, I.V., 2016. Silanized humic substances act as hydrophobic modifiers of soil separates inducing formation of water-stable aggregates in soils. Catena 137, 229-236. https://doi.org/10.1016/j.cate....
 
51.
Wang, B., Gao, L., Yu, W., Wei, X., Li, J., Li, S., Song, X., Liang, G., Cai, D., Wu, X., 2019. Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland. J. Arid Land 11, 241-254. https://doi.org/10.1007/s40333....
 
52.
Wang, Y., Hu, N., Xu, M., Li, Z., Lou, Y., Chen, Y., Wu, C., Wang, Z.-L., 2015. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biol. Fertil. Soils 51, 583-591. https://doi.org/10.1007/s00374....
 
53.
Welemariam, M., Kebede, F., Bedadi, B., Birhane, E., 2018. Effect of community-based soil and water conservation practices on soil glomalin, aggregate size distribution, aggregate stability and aggregate-associated organic carbon in northern highlands of Ethiopia. Agric. Food Secur. 7, 42. https://doi.org/10.1186/s40066....
 
54.
Williams, A., Kane, D.A., Ewing, P.M., Atwood, L.W., Jilling, A., Li, M., Lou, Y., Davis, A.S., Grandy, A.S., Huerd, S.C., Hunter, M.C., Koide, R.T., Mortensen, D.A., Smith, R.G., Snapp, S.S., Spokas, K.A., Yannarell, A.C., Jordan, N.R., 2016. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2....
 
55.
Williams, N.D., Petticrew, E.L., 2009. Aggregate stability in organically and conventionally farmed soils. Soil Use Manag. 25, 284-292. https://doi.org/10.1111/j.1475....
 
56.
Wittwer, R.A., Bender, S.F., Hartman, K., Hydbom, S., Lima, R.A.A., Loaiza, V., Nemecek, T., Oehl, F., Olsson, P.A., Petchey, O., Prechsl, U.E., Schlaeppi, K., Scholten, T., Seitz, S., Six, J., Van Der Heijden, M.G.A., 2021. Organic and conservation agriculture promote ecosystem multifunctionality. Sci. Adv. 7, eabg6995. https://doi.org/10.1126/sciadv....
 
57.
Wu, J., Stephen, Y., Cai, L., Zhang, R., Qi, P., Luo, Z., Li, L., Xie, J., Dong, B., 2019. Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China. J. Arid Land 11, 567-578. https://doi.org/10.1007/s40333....
 
58.
Yang, C., Sainju, U.M., Li, C., Fu, X., Zhao, F., Wang, J., 2023. Long-term chemical and organic fertilization differently affect soil aggregates and associated carbon and nitrogen in the loess plateau of China. Agronomy 13, 1466. https://doi.org/10.3390/agrono....
 
59.
Yang, Z.H., Singh, B.R., Sitaula, B.K., 2004. Soil organic carbon fractions under different land uses in Mardi Watershed of Nepal. Commun. Soil Sci. Plant Anal. 35, 615-629. https://doi.org/10.1081/CSS-12....
 
60.
Zhang, J., An, T., Chi, F., Wei, D., Zhou, B., Hao, X., Jin, L., Wang, J., 2019. Evolution over years of structural characteristics of humic acids in Black Soil as a function of various fertilization treatments. J. Soils Sediments 19, 1959-1969. https://doi.org/10.1007/s11368....
 
61.
Zhao, J., Chen, S., Hu, R., Li, Y., 2017. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil Till. Res. 167, 73-79. https://doi.org/10.1016/j.stil....
 
62.
Zhao, S., Yu, F., Zhai, C., Zhong, R., Zhao, Y., Wang, Y., Zhang, J., Meng, Q., 2023. Long-term effects of cattle manure application on the soil aggregate stability of salt-affected soil on the Songnen Plain of North-Eastern China. J. Soils Sediments 23, 344-354. https://doi.org/10.1007/s11368....
 
63.
Zibilske, L.M., Bradford, J.M., 2007. Soil aggregation, aggregate carbon and nitrogen, and moisture retention induced by conservation tillage. Soil Sci. Soc. Am. J. 71, 793-802. https://doi.org/10.2136/sssaj2....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top