RESEARCH PAPER
Machine learning-based soil aggregation assessment under four scenarios in northwestern Iran
 
More details
Hide details
1
Department of Soil Science, College of Agriculture, Isfahan University of Technology, 8415683111, Isfahan, Iran
 
2
Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft 78671-61167, Iran
 
3
Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
 
 
Final revision date: 2024-03-19
 
 
Acceptance date: 2024-05-09
 
 
Publication date: 2024-07-09
 
 
Corresponding author
Shamsollah Ayoubi   

Soil Science, Isfahan University of technology,, Iran
 
 
Int. Agrophys. 2024, 38(3): 293-310
 
HIGHLIGHTS
  • The efficacy of RF, k-NN, SVM, ANNs, and cubist (CB) were assessed for spatial prediction of aggregate ability indices
  • Among the various MLMs, the RF showed exceptional performance and reduced uncertainty for S4
  • SOM and clay content, followed by RS data, demonstrated the highest relative importance
KEYWORDS
TOPICS
ABSTRACT
Soil aggregate stability is crucial for maintaining the arrangement of solid particles and pore space in the soil, even under mechanical stresses. Traditional direct measurements of soil aggregate stability are time-consuming and expensive. This study aimed to spatially predict the soil aggregate stability indices, including the mean weight diameter of aggregates, the geometric mean diameter of aggregates, and the percentage of water stable aggregates, using five machine learning models and environmental covariates in the framework of digital soil mapping. A total of 100 samples were collected from the surface layer (0-15 cm) of soils in the Aji-Chai watershed, northwestern Iran, and their SAS indices were determined by standard laboratory methods. Four scenarios (S) were employed to evaluate the most influencing auxiliary variables, including (S1): topographic attributes, (S2): topographic attributes + remote sensing data, (S3): S2 + thematic maps (geology, land use/cover maps), and (S4): S3 + selected soil properties. Among the various machine learning models, the random forest showed exceptional performance and reduced uncertainty for S4, compared to the other machine learning models and desired scenarios. The coefficient of determination, concordance correlation coefficient, and normalized root mean squared error values of the random forest model were 0.86, 0.87, and 31.42% for mean weight diameter; 0.80, 0.84, and 31.59% for geometric mean diameter; and 0.54, 0.68, and 20.75% for water stable aggregates, respectively. Additionally, properties such as soil organic matter and clay, followed by remote sensing data, demonstrated the highest relative importance when compared to the other covariates in predicting the soil aggregate stability indices. In conclusion, the random forest ML-based model seems to be able to accurately predict soil aggregate stability indices at the watershed scale. The generated maps can serve as a valuable baseline for land use planning and decision-making. These findings contribute to the scientific understanding of soil physical quality indicators and their application in sustainable land management practices.
ACKNOWLEDGEMENTS
The authors greatly acknowledge the Isfahan University of Technology for the financial support of this research.
CONFLICT OF INTEREST
The Authors do not declare any conflict of interest.
 
REFERENCES (117)
1.
Adhikari, K., Owens, P.R., Ashworth, A.J., Sauer, T.J., Libohova, Z., Richter, J.L. and Miller, D.M., 2018. Topographic controls on soil nutrient variations in a silvopasture system. Agrosys. Geosci. Environ. 1(1), 1-15. https://doi.org/10.2134/age201....
 
2.
Annabi, M., Raclot, D., Bahri, H., Bailly, J.S., Gomez, C., Le Bissonnais, Y., 2017. Spatial variability of soil aggregate stability at the scale of an agricultural region in Tunisia. Catena 153, 157-167. https://doi:10.1016/j.catena.2....
 
3.
Arrouays, D., McBratney, A., Bouma, J., Libohova, Z., Richer-de-Forges, A.C., Morgan, C.L., Roudier, P., Poggio, L., Mulder, V.L., 2020. Impressions of digital soil maps: The good, the not so good, and making them ever better. Geoderma Regional 20, p.e00255. https://doi.org/10.1016/j.geod....
 
4.
Asadi, H., Bagheri, F., 2010. Comparison of regression pedotransfer functions and artificial neural networks for soil aggregate stability simulation. World Appl. Sci. J. 8(9), 1065-1072.
 
5.
Ayoubi, S., Karchegani, P.M., Mosaddeghi, M.R., Honarjoo, N., 2012. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil Till. Res. 121, 18-26. https://doi.org/10.1016/j.stil....
 
6.
Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M.R., 2020. Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. Int. Agrophys. 34(3). https://doi.org/10.31545/intag....
 
7.
Bakhshandeh, E., Hossieni, M., Zeraatpisheh, M., Francaviglia, R., 2019. Land use change effects on soil quality and biological fertility: a case study in northern Iran. Eur. J. Soil Biol. 95, 103119. https://doi.org/10.1016/j.ejso....
 
8.
Behrens, T., Förster, H., Scholten, T., Steinrücken, U., Spies, E.D. Goldschmitt, M., 2005. Digital soil mapping using artificial neural networks. J. Plant Nutrition Soil Sci. 168(1), 21-33. https://doi.org/10.1002/jpln.2....
 
9.
Behrens, T., Zhu, A.X., Schmidt, K., Scholten, T., 2010. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 155(3-4), 175-185. https://doi.org/10.1016/j.geod....
 
10.
Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Mosaddeghi, M., Schulin, R., 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena 111, 72-79. https://doi.org/10.1016/j.cate....
 
11.
Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Jazi, A.Y., Gharipour, A., 2014. Feature selection using parallel genetic algorithm for the prediction of geometric mean diameter of soil aggregates by machine learning methods. Arid Land Res. Manag. 28(4), 383-394. https://doi:10.1080/15324982.2....
 
12.
Bhattacharyya, R., Rabbi, S.M., Zhang, Y., Young, I.M., Jones, A.R., Dennis, P.G., et al., 2021. Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Sci. Total Environ. 778, 146286. https://doi.org/10.1016/j.scit....
 
13.
Boateng, E.Y., Otoo, J., Abaye, D.A., 2020. Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: a review. J. Data Analysis Information Processing 8(4), 341-357. https://doi.org/10.4236/jdaip.....
 
14.
Bouslihim, Y., Rochdi, A., Aboutayeb, R., El Amrani-Paaza, N., Miftah, A., Hssaini, L., 2021a. Soil aggregate stability mapping using remote sensing and GIS-based machine learning technique. Frontiers Earth Sci. 9, 748859. https://doi.org/10.3389/feart.....
 
15.
Bouslihim, Y., Rochdi, A., Paaza, N.E.A., 2021b. Machine learning approaches for the prediction of soil aggregate stability. Heliyon 7(3), https://doi.org/10.1016/j.heli....
 
16.
Breiman, L., 2001. Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010....
 
17.
Browning, D.M., Duniway, M.C., 2011. Digital soil mapping in the absence of field training data: A case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential. Applied Environ. Soil Sci. 2011(1), 421904. https://doi.org/10.1155/2011/4....
 
18.
Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards Jr, T.C., 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239, 68-83. https://doi.org/10.1016/j.geod....
 
19.
Campbell, P.M.D.M., Fernandes Filho, E.I., Francelino, M.R., Demattê, J.A.M., Pereira, M.G., Pinto, L.A.D.S.R., 2019. Digital soil mapping of soil properties in the “Mar de Morros” environment using spectral data. Revista Brasileira de Ciência do Solo, 42, p.e0170413. http://dx.doi.org/10.1590/1806....
 
20.
Cantón, Y., Solé-Benet, A., Asensio, C., Chamizo, S., Puigdefábregas, J., 2009. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena 77(3), 192-199. https://doi:10.1016/j.catena.2....
 
21.
Caravaca, F., Lax, A., Albaladejo, J., 2004. Aggregate stability and carbon characteristics of particle-size fractions in cultivated and forested soils of semiarid Spain. Soil Till. Res. 78(1), 83-90. https://doi.org/10.1016/j.stil....
 
22.
Celik, I., 2005. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil Till. Res. 83(2), 270-277. https://doi.org/10. 1016/j.still. 2004. 08.001.
 
23.
Chahal I., Eerd L.L., 2019. Quantifying soil quality in a horticultural-cover cropping system. Geoderma 352, 38-48. https://doi.org/10.1016/j.geod....
 
24.
Chaney, K., Swift, R.S., 1984. The influence of organic matter on aggregate stability in some British soils. J. Soil Sci. 35(2), 223-230. https://doi.org/10.1111/j.1365....
 
25.
Chaplot, V., Cooper, M., 2015. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma 243, 205-213. https://doi.org/10.1016/j.geod....
 
26.
Chen, S., Arrouays, D., Mulder, V.L., Poggio, L., Minasny, B., Roudier, P., et al., 2022. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 409, 115567. https://doi.org/10.1016/j.geod....
 
27.
Chen, D., Zhao, J., Qin, S., 2023. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technolog. Sciences 66(10), 2996-3010. https://doi.org/10.1007/s11431....
 
28.
Chenu, C., Le Bissonnais, Y., Arrouays, D., 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 64(4), 1479-1486. https://doi.org/10.2136/sssaj2....
 
29.
da Silva Chagas, C., de Carvalho Junior, W., Bhering, S.B., Calderano Filho, B., 2016. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. Catena 139, 232-240. https://doi.org/10.1016/j.cate....
 
30.
Deng, C., Teng, X., Peng, X., Zhang, B., 2014. Effects of simulated puddling intensity and pre-drying on shrinkage capacity of a paddy soil under long-term fertilization. Soil Till. Res. 140, 135-143. https://doi.org/10.1016/j.stil....
 
31.
Dexter A.R., Richard G., Arrouays D., Czyż E.A., Jolivet C., Duval O., 2008. Complexed organic matter controls soil physical properties. Geoderma 144, 620-627. https:// doi:10.1016/j. geoderma.2008.01.022.
 
32.
Ding, J., Li, F., Yang, G., Chen, L., Zhang, B., Liu, L., et al., 2016. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biol. 22(8), 2688-2701. https://doi.org/10.1111/gcb.13....
 
33.
Djukic, I., Zehetner, F., Tatzber, M., Gerzabek, M.H., 2010. Soil organic‐matter stocks and characteristics along an Alpine elevation gradient. J. Plant Nutr. Soil Sci. 173(1), 30-38. https://doi.org/10.1002/jpln.2....
 
34.
Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., Scholten, T., 2020. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing 12(14), 2234. https://doi.org/10.3390/rs1214....
 
35.
Gee, G.W., Bauder, J.W., 1986. Particle‐size analysis. Methods of soil analysis: Part 1. Physical and mineralogical methods, 5, 383-411. https://doi.org/10.2136/sssabo....
 
36.
Geisseler, D., Scow, K.M., 2014. Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biol. Biochemistry, 75, 54-63. https://doi.org/10.1016/j. soilbio.2014.03.023.
 
37.
Gholoubi, A., Emami, H., Caldwell, T., 2019. Deforestation effects on soil aggregate stability quantified by the high energy moisture characteristic method. Geoderma 355, 113919. https://doi.org/10.1016/j.geod....
 
38.
Gunarathna, M.H.J.P., Sakai, K., Nakandakari, T., Momii, K., Kumari, M.K.N., 2019. Machine learning approaches to develop pedotransfer functions for tropical Sri Lankan soils. Water 11(9), 1940. https://doi.org/10.3390/w11091....
 
39.
Hanke, D., Dick, D.P., 2017. Aggregate stability in soil with humic and histic horizons in a toposequence under Araucaria Forest. Revista Brasileira de Ciência do Solo 41, https://doi.org/10.1590/180696....
 
40.
Hati, K.M., Swarup, A., Dwivedi, A.K., Misra, A.K., Bandyopadhyay, K.K., 2007. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring. Agric. Ecosys. Environ., 119(1-2), 127-134. https://doi.org/10.1016/j.agee....
 
41.
Havaee, S., Ayoubi, S., Mosaddeghi, M.R., Keller, T., 2014. Impacts of land use on soil organic matter and degree of compactness in calcareous soils of central Iran. Soil Use Management 30(1), 2-9. https://doi.org/10.1111/sum.12....
 
42.
Hengl, T., Heuvelink, G.B., Stein, A., 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1-2), 75-93. https://doi.org/ 10.1016/j.geoderma.2003.08.018.
 
43.
Hengl, T., Heuvelink, G.B., Kempen, B., Leenaars, J.G., Walsh, M.G., Shepherd, K.D., et al., 2015. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PloS one 10(6), p.e0125814. https://doi.org/10.1371/journa....
 
44.
Heung, B., Ho, H.C., Zhang, J., Knudby, A., Bulmer, C.E., Schmidt, M.G., 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 265, 62-77. https://doi.org/10.1016/j.geod....
 
45.
Farahani, E.M.A.M.I., Emami, H., Fotovat, A., Khorassani, R., 2019. Effect of different K: Na ratios in soil on dispersive charge, cation exchange and zeta potential. Eur. J. Soil Sci. 70(2), 311-320. https://doi.org/10.1111/ejss.1....
 
46.
Ferreira, T.R., Archilha, N.L., Cássaro, F.A., Pires, L.F., 2023. How can pore characteristics of soil aggregates from contrasting tillage systems affect their intrinsic permeability and hydraulic conductivity?. Soil Till. Res. 230, 105704. https://doi.org/10.1016/j.stil....
 
47.
Fuentes J.P., Flury M., Bezdicek D., 2004. Hydraulic properties in a silt loam soil under natural prairie, conventional till, and no-till. Soil Sci. Soc. Am. J. 68, 1679-1688. https://doi.org/10.2136/sssaj2....
 
48.
Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., Hole-Filled, S.R.T.M., 2008. for the globe Version 4. Available from the CGIARSXI SRTM 90m database: http://srtm.csi.cgiar.org.
 
49.
Jastrow, J.D., Miller, R.M., Lussenhop, J., 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 30, 905-916. JAXA, 2019. ALOS Global Digital Surface Model “ALOS World 3D – 30m (AW3D30)”. https://doi.org/10.1016/S0038-....
 
50.
Jiang, L., 2021. A fast and accurate circle detection algorithm based on random sampling. Future Generation Computer Systems 123, 245-256. https://doi.org/10.1016/j.futu....
 
51.
Jones, E.J., Filippi, P., Wittig, R., Fajardo, M., Pino, V., McBratney, A.B., 2021. Mapping soil slaking index and assessing the impact of management in amixed agricultural landscape. Soil 7(1), 33-46. https://doi.org/10.5194/soil-7....
 
52.
Kamamia, A.W., Vogel, C., Mwangi, H.M., Feger, K.H., Sang, J., Julich, S., 2021. Mapping soil aggregate stability using digital soil mapping: A case study of Ruiru reservoir catchment, Kenya. Geoderma Regional 24, p.e00355. https://doi.org/10.1016/j.geod....
 
53.
Kavdir, Y., Özcan, H., Ekinci, H., Yüksel, O., Yi̇ği̇ni̇, Y., 2004. The influence of clay content, organic carbon and land use types on soil aggregate stability and tensile strength. Turkish J. Agric. Forestry 28(3), 155-162.
 
54.
Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 425-442. https://doi.org/10.2136/ sssabookser5.1.2ed.c17.
 
55.
Khaledian, Y., Miller, B.A., 2020. Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modelling 81, 401-418. https://doi.org/10.1016/j.apm.....
 
56.
Khazaei, A., Mosaddeghi, M.R., Mahboubi, A.A., 2008. Impacts of test conditions, soil organic matter, clay and calcium carbonate contents on mean weight diameter and tensile strength of aggregates of some Hamedan soils. JWSS-Isfahan Univ. Technology 12(44), 123-134. https://doi.org/20.1001.1.2476....
 
57.
Khosravani, P., Baghernejad, M., Moosavi, A.A., FallahShamsi, S.R., 2023. Digital mapping to extrapolate the selected soil fertility attributes in calcareous soils of a semiarid region in Iran. J. Soils Sediments 23(11), 4032-4054. https://doi.org/ 10.1007/s11368-023-03548-1.
 
58.
Le Bissonnais, Y., 2016. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 67(1), 11-21. https://doi.org/10.1111/ejss.4....
 
59.
Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R news, 2(3), 18-22.
 
60.
Liu, F., Rossiter, D.G., Song, X., Zhang, G.L., Wu, H., Zhao, Y., 2020. An approach for broad‐scale predictive soil properties mapping in low‐relief areas based on responses to solar radiation. Soil Sci. Soc. Am. J. 84(1), 144-162. https://doi.org/10.1002/saj2.2....
 
61.
Liu, Z., Wang, M., Zhou, J., Chen, Z., Xu, X., Zhu, Y., 2023. Soil aggregation is more important than mulching and nitrogen application in regulating soil organic carbon and total nitrogen in a semiarid calcareous soil. Sci. Total Environ. 854, 158790. https://doi.org/10.1016/j.scit....
 
62.
Ma, Z., Shi, Z., Zhou, Y., Xu, J., Yu, W., Yang, Y., 2017. A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai-Tibet Plateau with the effects of systematic anomalies removed. Remote Sens. Environ. 200, 378-395. https://doi.org/10.1016/j.rse.....
 
63.
Mahjenabadi, V.A.J., Mousavi, S.R., Rahmani, A., Karami, A., Rahmani, H.A., Khavazi, K., et al., 2022. Digital mapping of soil biological properties and wheat yield using remotely sensed, soil chemical data and machine learning approaches. Computers Electronics Agric. 197, 106978. https://doi.org/10.1016/j.comp....
 
64.
Malone, B.P., McBratney, A.B., Minasny, B., Laslett, G.M., 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 154(1-2), 138-152. https://doi.org/10.1016/j.geod....
 
65.
Mansuy, N., Thiffault, E., Paré, D., Bernier, P., Guindon, L., Villemaire, P., et al., 2014. Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method. Geoderma 235, 59-73. https://doi.org/10.1016/j.geod....
 
66.
Martin, M.P., Dimassi, B., Román Dobarco, M., Guenet, B., Arrouays, D., Angers, D.A., et al., 2021. Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France. Global Change Biol. 27(11), 2458-2477. https://doi.org/10.1111/gcb.15....
 
67.
Mashalaba, L., Galleguillos, M., Seguel, O., Poblete-Olivares, J., 2020. Predicting spatial variability of selected soil properties using digital soil mapping in a rainfed vineyard of central Chile. Geoderma Regional 22, p.e00289. https://doi.org/10.1016/j.geod....
 
68.
Matinfar, H.R., Maghsodi, Z., Mousavi, S.R., Rahmani, A., 2021. Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale. Catena 202, 105258. https://doi.org/10.1016/j.cate....
 
69.
McBratney, A.B., Santos, M.M., Minasny, B., 2003. On digital soil mapping. Geoderma 117(1-2), 3-52. https://doi.org/10.1016/S0016-....
 
70.
Minasny, B., McBratney, A.B., Malone, B.P., Wheeler, I., 2013. Digital mapping of soil carbon. Advances Agronomy 118, 1-47. https://doi.org/10.1016/B978-0....
 
71.
Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., et al., 2021. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Science Advances 7(9), p.eaaz5236. https://doi.org/10.1126/sciadv....
 
72.
Mousavi, S.R., Sarmadian, F., Omid, M., Bogaert, P., 2022. Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement 201, 111706. https://doi.org/10.1016/j.meas....
 
73.
Mousavi, S.R., Sarmadian, F., Angelini, M.E., Bogaert, P., Omid, M., 2023. Cause-effect relationships using structural equation modeling for soil properties in arid and semi-arid regions. Catena 232, 107392. https://doi.org/10.1016/j.cate....
 
74.
Nemes, A., Rawls, W.J., Pachepsky, Y.A., 2006. Use of the nonparametric nearest neighbor approach to estimate soil hydraulic properties. Soil Sci. Am. J. 70(2), 327-336. https://doi.org/10.2136/sssaj2....
 
75.
Nsabimana, G., Bao, Y., He, X., Nambajimana, J.D.D., Wang, M., Yang, L., et al., 2020. Impacts of water level fluctuations on soil aggregate stability in the three gorges reservoir, China. Sustainability 12(21), 9107. https://doi.org/10.3390/su1221....
 
76.
Page, A.L., Miller, R.H., and Keeney, D.R., 1982. Methodes of Soil Analysis Part2: Chemical and Biological Properties, 2nd ed. Soil Sci. Am. J. Inc. Publisher Lected soil properties. Soil Sci. Am. J. 56, 557-561.
 
77.
Rahmani, A., Sarmadian, F., Arefi, H., 2022. Digital mapping of top-soil thickness and associated uncertainty using machine learning approach in some part of arid and semi-arid lands of Qazvin Plain. Iranian J. Soil Water Res. 53(3), 585-602. https://doi.org/10.22059/IJSWR....
 
78.
Resurreccion, A.C., Moldrup, P., Tuller, M., Ferré, T.P.A., Kawamoto, K., Komatsu, T., et al., 2011. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents. Water Res. Res. 47(6). https:// doi.10.1029/2010WR010229.
 
79.
Rezaei, M., Mousavi, S.R., Rahmani, A., Zeraatpisheh, M., Rahmati, M., Pakparvar, M., et al., 2023. Incorporating machine learning models and remote sensing to assess the spatial distribution of saturated hydraulic conductivity in a light-textured soil. Computers Electronics Agric. 209, 107821. https://doi.org/10.1016/j.comp....
 
80.
Rostaminia, M., Rahmani, A., Mousavi, S.R., Taghizadeh-Mehrjardi, R., Maghsodi, Z., 2021. Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms. Environ. Monitoring Assess. 193, 1-17. https://doi.org/10.1007/s10661....
 
81.
Samaei F., Emami H., Lakzian A., 2022. Assessing soil quality of pasture and agriculture land uses in Shandiz country, northaestern Iran. Ecol. Indicators 108974-108984. https://doi.org/10.1016/j.ecol....
 
82.
Shi, P., Castaldi, F., van Wesemael, B., Van Oost, K., 2020. Large-scale, high-resolution mapping of soil aggregate stability in croplands using APEX hyperspectral imagery. Remote Sensing 12(4), 666. https://doi.org/10.3390/rs1204....
 
83.
Shrestha, D.L., Solomatine, D.P., 2006. Machine learning approaches for estimation of prediction interval for the model output. Neural Networks 19(2), 225-235. https://doi.org/10.1016/j.neun....
 
84.
Soinne, H., Hyväluoma, J., Ketoja, E., Turtola, E., 2016. Relative importance of organic carbon, land use and moisture conditions for the aggregate stability of post-glacial clay soils. Soil Till. Res. 158, 1-9. https://doi.org/10.1016/j.stil....
 
85.
Solomon, D., Fritzsche, F., Lehmann, J., Tekalign, M., Zech, W., 2002. Soil organic matter dynamics in the subhumid agroecosystems of the Ethiopian highlands: Evidence from natural 13C abundance and particle‐size fractionation. Soil Sci. Soc. Am. J. 66(3), 969-978. https://doi.org/10.2136/sssaj2....
 
86.
Song, X.D., Wu, H.Y., Ju, B., Liu, F., Yang, F., Li, D.C., et al., 2020. Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma 363, 114145.https://doi.org/10.1016/j.geod....
 
87.
Szabó, B., Szatmári, G., Takács, K., Laborczi, A., Makó, A., Rajkai, K., et al., 2019. Mapping soil hydraulic properties using random-forest-based pedotransfer functions and geostatistics. Hydrol. Earth System Sci. 23(6), 2615-2635. https://doi.org/10.5194/hess-2....
 
88.
Tajik, S., Ayoubi, S., Khajehali, J., Shataee, S., 2019a. Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arabian J. Geosci. 12(11), 368.https://doi.org/10.1007/s12517....
 
89.
Tajik, S., Ayoubi, S., Shirani, H., Zeraatpisheh, M., 2019b. Digital mapping of soil invertebrates using environmental attributes in a deciduous forest ecosystem. Geoderma 353, 252-263. https://doi.org/10.1016/j.geod....
 
90.
Tajik, S., Ayoubi, S., Zeraatpisheh, M., 2020. Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran. Geoderma Regional 20, p.e00256. https://doi.org/10.1016/j.geod....
 
91.
Taghizadeh-Mehrjardi, R., Nabiollahi, K., Kerry, R., 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma 266, 98-110. https://doi.org/10.1016/j.geod....
 
92.
Tang, X., Liu, S., Liu, J., Zhou, G., 2010. Effects of vegetation restoration and slope positions on soil aggregation and soil carbon accumulation on heavily eroded tropical land of Southern China. J. Soils Sediments 10, 505-513. https://doi.org/10.1007/s11368....
 
93.
Tejada M., Gonzalez J.L., 2008. Influence of two organic amendments on the soil physical properties, soil Losses, sediments and runoff water quality. Geoderma 145, 325- 334. https://doi.org/10.1016/j.geod....
 
94.
Wadoux, A.M.C., Minasny, B., McBratney, A.B., 2020. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews 210, 103359. https://doi.org/10.1016/j.ears....
 
95.
Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29-38. https://doi.org/10.1097/000106....
 
96.
Wang, B., Waters, C., Orgill, S., Gray, J., Cowie, A., Clark, A., et al., 2018. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total Environ. 630, 367-378. https://doi.org/10.1016/j.scit....
 
97.
Wang, C., Zheng, M., Song, W., Wen, S., Wang, B., Zhu, C., et al., 2017. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol. Biochem. 113, 240-249. https://doi. org/10.1016/j.soilbio.2017.06.019.
 
98.
Wang, C., Zhang, G., Zhu, P., Chen, S., Wan, Y., 2023. Spatial variation of soil functions affected by land use type and slope position in agricultural small watershed. Catena 225, 107029. https://doi.org/10.1016/j.cate....
 
99.
Wang H., Guan D., Zhang R., Chen Y., Hu Y., Xiao H., 2014. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. J. Ecol. Eng. 70, 211-260. https://doi.org/10.1016/j.ecol....
 
100.
Wang, Z., Shi, W., 2018. Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy of soil particle-size fraction mapping. Geoderma 324, 56-66. https://doi.org/10.1016/j.geod....
 
101.
Weidhuner, A., Hanauer, A., Krausz, R., Crittenden, S.J., Gage, K., Sadeghpour, A., 2021. Tillage impacts on soil aggregation and aggregate-associated carbon and nitrogen after 49 years. Soil Till. Res. 208, 104878. https://doi.org/10.1016/j.stil....
 
102.
Wilding, L.P., Drees, L.R., 1978. Spatial Variability: A Pedologist’s Viewpoint1. Diversity Soils Tropics 34, 1-12. https://doi.org/10.2134/asaspe....
 
103.
World Health Organization, 2019. The state of food security and nutrition in the world 2019: safeguarding against economic slowdowns and downturns (Vol. 2019). Food Agric. Org. URL: http://www.fao.org/3/ca5162en/... 162en.pdf.
 
104.
Wu, T., Luo, J., Dong, W., Sun, Y., Xia, L., Zhang, X., 2019. Geo-object-based soil organic matter mapping using machine learning algorithms with multi-source geo-spatial data. IEEE J. Selected Topics Applied Earth Observations Remote Sensing 12(4), 1091-1106. https://doi. org/10.1109/JSTARS.2019.2902375.
 
105.
Yamaç, S.S., Şeker, C., Negiş, H., 2020. Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area. Agric. Water Manag. 234, 106121. https://doi.org/10.1016/j.agwa....
 
106.
Ye, L., Tan, W., Fang, L., Ji, L., Deng, H., 2018. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: I. Spatial variability. Soil Till. Res. 179, 71-81. https://doi.org/10.1016/j.stil....
 
107.
Ye, L., Tan, W., Fang, L., Ji, L., 2019. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: II. Spatial prediction. Soil Till. Res. 192, 1-11. https://doi.org/10.1016/j.stil....
 
108.
Yu, Y., Wan, M., Qian, J., Miao, D., Zhang, Z., Zhao, P., 2024. Feature selection for multi-label learning based on variable-degree multi-granulation decision-theoretic rough sets. Int. J. Approximate Reasoning,169, 109181. https://doi.org/10.1016/j.ijar....
 
109.
Zeraatpisheh, M., Khormali, F., 2012. Carbon stock and mineral factors controlling soil organic carbon in a climatic gradient, Golestan province. J. Soil Sci. Plant Nutr. 12(4), 637-654. https://doi.org/10.4067/ S0718-95162012005000022.
 
110.
Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., Finke, P., 2019. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 338, 445-452. https://doi.org/10.1016/j.geod....
 
111.
Zeraatpisheh, M., Jafari, A., Bodaghabadi, M.B., Ayoubi, S., Taghizadeh-Mehrjardi, R., Toomanian, N., et al., 2020. Conventional and digital soil mapping in Iran: Past, present, and future. Catena 188, 104424. https://doi.org/10.1016/j.cate....
 
112.
Zeraatpisheh, M., Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M.R. Xu, M., 2021. Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Regional 27, p.e00440. https://doi.org/10.1016/j.geod....
 
113.
Zhao, D., Wang, J., Zhao, X., Triantafilis, J., 2022. Clay content mapping and uncertainty estimation using weighted model averaging. Catena 209, 105791. https://doi.org/10.1016/j.cate....
 
114.
Zhao, Z.D., Zhao, M.S., Lu, H.L., Wang, S.H., Lu, Y.Y., 2023. Digital mapping of Soil pH based on machine learning combined with feature selection methods in East China. Sustainability 15(17), 12874. https://doi.org/10.3390/su1517....
 
115.
Zhou, Y., Chen, S., Zhu, A.X., Hu, B., Shi, Z., Li, Y., 2021. Revealing the scale-and location-specific controlling factors of soil organic carbon in Tibet. Geoderma 382, 114713.https://doi.org/10.1016/j.geod....
 
116.
Zhu C., Li, X., Wang, C., Zhang, B., Li, B., 2024. Deep Learning-Based Coseismic Deformation Estimation from InSAR Interferograms. IEEE Trans. Geoscience Remote Sensing. In Press. Jan 22.
 
117.
Zolfaghari, A.A., Tirgar Soltani, M.T., Dyck, M., Weldeyohannes A., 2013. Comparison of K-nearest neighbor and artificial neural network methods for predicting cation exchange capacity of soil. 50th Anniversary Alberta Soil Science Workshop, Book of Abstracts, 48.
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top