RESEARCH PAPER
Mechanical characterization of failure mechanisms during the cutting of Caragana korshinskii Kom. branches
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
 
 
Final revision date: 2024-10-22
 
 
Acceptance date: 2024-10-23
 
 
Publication date: 2024-12-09
 
 
Corresponding author
Zhihong Yu   

College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, China
 
 
Int. Agrophys. 2025, 39(1): 41-51
 
Compliance with ethical requirements: This study does not contain any experiment involving human or animal subjects.
HIGHLIGHTS
  • A failure characterization test for CKB was designed
  • The mechanical property change pattern of CKB failure is introduced
  • The range of mechanical parameters characterizing CKB failure was determined
KEYWORDS
TOPICS
ABSTRACT
The mechanical properties related to the failure of Caragana korshinskii Kom. branch is critically important for the design of stem crushers. This paper studies Caragana korshinskii Kom. branch, focusing on shear and transverse compression tests. When the external load surpasses the strength limit, the internal structure of Caragana korshinskii Kom. branch undergoes damage and cracking. As cracks accumulate, expand, and fuse, CKB deforms and fractures. The failure process is characterized by elastic, elastoplastic, and plastic fracture, indicating that the yield strength varies. The sampling position and moisture content significantly influence the maximum shear strength and compressive strength, with the sampling position being particularly impactful. Shear and transverse compression tests illustrate the development process of CKB. Additionally, second-order response models for the relationship of the CKB moisture content, sampling location, and loading rate with shear strength and compressive strength were constructed. The p-values of the models were all less than 0.01, with determination coefficients exceeding 0.98, adjusted determination coefficients over 0.96, and coefficients of variation being 8.78 and 6.51%, respectively. Furthermore, the shear failure range spanned from 37.25 to 158.94 MPa, and the compression failure range extended from 12.32 to 63.93 MPa. In summary, to achieve effective chopping of CKB, the applied force must exceed the maximum shear strength of 158.94 MPa and the compressive strength of 63.93 MPa.
FUNDING
National Natural Science Foundation of China (52265035), Inner Mongolia Autonomous Region Natural Science Foundation (2022MS05049), Research Program of science and technology at Universities of Inner Mongolia Autonomous Region (NJZZ23047), Program for improving the Scientific Research Ability of Youth Teachers of Inner Mongolia Agricultural University (BR230154).
CONFLICT OF INTEREST
The Authors declare that they have no conflict of interest.
REFERENCES (37)
1.
Al-musawi, H., Huber, C., Grabner, M., Ungerer, B., Krenke, T., Matz, P., et al., 2023. Compressive strength of beech and birch at different moisture contents and temperatures. J. Materials Sci. 58(35), 13994-14008. https://doi.org/10.1007/s10853....
 
2.
Aydın, İ., Arslan, S., 2018. Mechanical properties of cotton shoots for topping. Industrial Crops Products 112, 396-401. https://doi.org/10.1016/j.indc....
 
3.
Boydaş, M.G., Çomakli, M., Sayinci, B., Kara, M., 2019. Effects of moisture content, internode region, and oblique angle on the mechanical properties of sainfoin stem. Turkish J. Agric. Forestry 43(2), 254-263. https://doi.org/10.3906/tar-18....
 
4.
Chen, M., Xu, G., Wei, M., Li, X., Wei, Y., Diao, P., et al., 2023. Optimization design and experiment on feeding and chopping device of silage maize harvester. Int. J. Agric. Biol. Eng. 16(3), 64-77. https://doi.org/10.25165/j.ija....
 
5.
Christensen-Dalsgaard, K.K., Ennos, A.R., 2012. Effects of drought acclimation on the mechanical properties of Ochroma pyramidale, Betula pendula and Acacia karroo tree seedling stems. Forestry 85(2), 215-223. https://doi.org/10.1093/forest....
 
6.
Muzamil, M., Mani, I., Kumar, A., Lande, S., 2016. Influence of moisture content, loading rate and internode position on the mechanical properties of paddy and wheat straw. Int. J. Bio-Resource and Stress Management 7(2), 280-285. https://doi.org/10.23910/IJBSM....
 
7.
Gao, Y., Kang, F., Kan, J., Wang, Y., Tong, S., 2021. Analysis and experiment of cutting mechanical parameters for Caragana korshinskii (C.k.) Branches. Forests 12(10), 1359. https://doi.org/10.3390/f12101....
 
8.
Gunaratne, T., Krook, J., Andersson, H., Eklund, M., 2020. Potential valorisation of shredder fines: Towards integrated processes for material upgrading and resource recovery. Resources, Conservation Recycling 154, 104590. https://doi.org/10.1016/j.resc....
 
9.
Igathinathane, C., Womac, A.R., Sokhansanj, S., 2010. Corn stalk orientation effect on mechanical cutting. Biosys. Eng. 107(2), 97-106. https://doi.org/10.1016/j.bios....
 
10.
Khan, Md. M.R., Chen, Y., Laguë, C., Landry, H., Peng, Q., Zhong, W., 2010. Compressive properties of Hemp (Cannabis sativa L.) stalks. Biosys. Eng. 106(3), 315-323. https://doi.org/10.1016/j.bios....
 
11.
Khodier, K., Feyerer, C., Möllnitz, S., Curtis, A., Sarc, R., 2021. Efficient derivation of significant results from mechanical processing experiments with mixed solid waste: Coarse-shredding of commercial waste. Waste Manag. 121, 164-174. https://doi.org/10.1016/j.wasm....
 
12.
Kumar, A., Nayak, A.K., Sharma, S., Senapati, A., Mitra, D., Mohanty, B., et al., 2023. Rice straw recycling: A sustainable approach for ensuring environmental quality and economic security. Pedosphere 33(1), 34-48. https://doi.org/10.1016/j.peds....
 
13.
Leblicq, T., Vanmaercke, S., Ramon, H., Saeys, W., 2015. Mechanical analysis of the bending behaviour of plant stems. Biosys. Eng. 129, 87-99. https://doi.org/10.1016/j.bios....
 
14.
Li, C., Zhang, H., Wang, Q., Chen, Z., 2022. Influencing factors of cutting force for apple tree branch pruning. Agriculture 12(2), 312. https://doi.org/10.3390/agricu....
 
15.
Li, C., Zhang, J., Cao, L., Zhang, X., 2024. Analysis of dynamic mechanical properties of Caragana korshinskii using split Hopkinson pressure bar test. J. Northeast Forestry Univ. 52(5), 102-106. https://doi.org/10.13759/j.cnk....
 
16.
Liang, R., Chen, X., Zhang, B., Peng, X., Meng, H., Jiang, P., et al., 2020. Tests and analyses on mechanical characteristics of dwarf-dense-early major cotton variety stalks. Int. Agrophys. 34(3), 333-342. https://doi.org/10.31545/intag....
 
17.
Long, Y., Liang, F., Zhang, J., Xue, M., Zhang, T., Pei, X., 2020. Identification of drought response genes by digital gene expression (DGE) analysis in Caragana korshinskii Kom. Gene 725, 144170. Q3. https://doi.org/10.1016/j.gene....
 
18.
Ma, Y., Wu, S., Zhuang, J., Tian, Y., Qi, H., Tong, J., 2019. The effect of lignin on the physicomechanical, tribological, and morphological performance indicators of corn stalk fiber-reinforced friction materials. Materials Res. Express 6(10), 105325. https://doi.org/10.1088/2053-1....
 
19.
Möllnitz, S., Khodier, K., Pomberger, R., Sarc, R., 2020. Grain size dependent distribution of different plastic types in coarse shredded mixed commercial and municipal waste. Waste Manag. 103, 388-398. https://doi.org/10.1016/j.wasm....
 
20.
Okyere, F.G., Kim, H.T., Basak, J.K., Khan, F., Bhujel, A., Park, J., et al., 2022. Influence of operational properties and material’s physical characteristics on mechanical cutting properties of corn stalks. J. Biosys. Eng. 47(2), 197-208. https://doi.org/10.1007/s42853....
 
21.
Qiu, S., Cui, Q., Wu, Z., Li, X., Guo, Y., 2019. Shear strength of stalks of Caragana korshinskii at different ages. J. Shanxi Agric. Univ. (Natural Science Edition) 39(6), 107-112.
 
22.
Radmanović, K., Roginić, R., Beljo Lučić, R., Jovanović, J., Jug, M., Sedlar, T., et al., 2021. Effect of a high loading rate on the compressive properties of beech wood in the longitudinal direction. BioResources 16(2), 4093-4105. https://doi.org/10.15376/biore....
 
23.
Ray, P.M., Bret-Harte, M.S., 2019. Elastic and irreversible bending of tree and shrub branches under cantilever loads. Frontiers Plant Sci. 10, 59. https://doi.org/10.3389/fpls.2....
 
24.
Su, Q., Liu, W., Ma, X., Zhang, J., Yu, Z., Liu, Z., et al., 2024. A nonlinear elastic-plastic model describing the bending and fracture behavior of Caragana korshinskii Kom. Branch wood. Wood Material Sci. Eng. 1-11. https://doi.org/10.1080/174802....
 
25.
Standard, C.I., 2009. GB/T 1935-2009. Method of testing in compressive strength parallel to grain of wood. Standardization Administration of the People's Republic of China. Beijing, CN.
 
26.
Standard, C.I., 2009. GB/T 1935-2009. Method of testing in shearing strength parallel to grain of wood. Standardization Administration of the People's Republic of China. Beijing, CN.
 
27.
Wang, T., Liu, H., Duan, C., Xu, R., Zhang, Z., She, D., et al., 2020. The eco-friendly biochar and valuable bio-oil from Caragana korshinskii: pyrolysis preparation, characterization, and adsorption applications. Materials 13(15), 3391. https://doi.org/10.3390/ma1315....
 
28.
Wang, Z., Gerile Cui, T., Hao, X., Zhang, Y., Si, Q., 2021. Mecha-nical properties of the branches of Salix psammophila and its influencing factors. J. China Agric. Univ. 26(11), 84-96.
 
29.
Wang, Y., Yang, Y., Zhao, H., Liu, B., Ma, J., He, Y., et al., 2020. Effects of cutting parameters on cutting of citrus fruit stems. Biosys. Eng. 193, 1-11. https://doi.org/10.1016/j.bios....
 
30.
Xu, H., Wang, Z., Li, Y., He, J., Wu, X., 2020. Dynamic growth models for Caragana korshinskii shrub biomass in China. J. Environ. Manag. 269, 110675. https://doi.org/10.1016/j.jenv....
 
31.
Yang, J., Ma, Z., Zhang, S., Li, X., Luo, H., Feng, Y., 2022. Experimental analysis on mechanical properties of different varieties hop stems. J. Physics: Conf. Series 2368(1), 012030. https://doi.org/10.1088/1742-6....
 
32.
Yi, W., Yitan, Z., Yan, Y., Hongmei, Z., Changhui, Y., Yu, H., et al., 2020. Discrete element modelling of citrus fruit stalks and its verification. Biosys. Eng. 200, 400-414. doi.10.1016/j.biosystemseng.2020.10.020.
 
33.
Zhao, L., Zhou, H., Jin, S., Cui, W., Wang, M., 2024. Mechanical properties of poplar (NL-3412) branches. Wood Material Sci. Eng. 1-11. https://doi.org/10.1080/174802....
 
34.
Zhao, W., Chen, M., Xie, J., Cao, S., Wu, A., Wang, Z., 2023. Discrete element modeling and physical experiment research on the biomechanical properties of cotton stalk. Computers Electronics Agric. 204, 107502. https://doi.org/10.1016/j.comp....
 
35.
Zhao, Y., Tang, Z., Chen, S., 2022. Loading Model and Mechanical Properties of Mature Broccoli (Brassica oleracea L. var. Italica Plenck) Stems Harvest. Agriculture 12(10), 1519. https://doi.org/10.3390/agricu....
 
36.
Zhao, Y., Wang, L., Knighton, J., Evaristo, J., Wassen, M., 2021. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem. Agric. Forest Meteorol. 300, 108323. https://doi.org/10.1016/j.agrf....
 
37.
Zhang, P., Pei, C., Liu, Z., Zhang, S., Zhang, Q., Wang, D., 2024. Static mechanical properties testing of Salix and Caragana shrubs based on electrical testing method. J. Inner Mongolia University Technol. Natural Sci. Edition 43(4), 338-342. doi.10.13785/j.cnki.nmggydxxbzrkxb.2024.04.008.
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top