RESEARCH PAPER
Modeling of energy use and greenhouse gas emissions in orange production with artificial neural networks: case study of Turkey
 
 
More details
Hide details
1
Department of Environmental Protection Control, Adana Metropolitan Municipality, Adana, 01120, Turkey
 
 
Final revision date: 2024-12-09
 
 
Acceptance date: 2025-01-15
 
 
Publication date: 2025-03-17
 
 
Corresponding author
Bekir Yelmen   

Department of Environmental Protection Control, Adana Metropolitan Municipality, Adana, Turkey
 
 
Int. Agrophys. 2025, 39(2): 165-173
 
HIGHLIGHTS
  • Use of ANN in orange farming due to its significant predictive capabilities
  • Evaluation of accuracy of ANN model in predicting GHGE and EI in orange farming
  • Shows that medium-sized farms have higher EUE and NE compared to other farms
KEYWORDS
TOPICS
ABSTRACT
ANN models were utilised in the case of orange (Citrus sinensis L.) cultivation in Adana Province to predict greenhouse gas emissions and total energy input. The share of chemical fertilizers in orange cultivation is high and was calculated as 74.47%. Energy consumption and energy output values in large farms have the highest values with 34 972.38 and 35 305.92 MJ ha-1, respectively. Furthermore, there is no significant variance in energy use efficiency among the three different sizes of orange farms. In the orange cultivation, non-renewable energy sources (95.88%) have a significantly larger share than renewable energy sources (4.12%). Energy input in direct energy, indirect energy, renewable energy, and non-renewable energy sources configurations was calculated as 6 819.99, 27 185.07, 1401.98, and 32 603.08 MJ ha-1. The greenhouse gas analysis showed greenhouse gas emissions equivalent to 759.58 kgCO2eq ha-1. 56.84% of greenhouse gas emissions come from chemical fertilizers. The best Artificial neural network model training data used for orange production and greenhouse gas emissions has root mean square error values of 0.141 and 0.063, respectively, while the mean absolute percentage error values are 0.005 and 0.004, respectively. Due to the ability of Artificial neural networks to predict results, it can be effectively used in growing oranges and other plant crops.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES (25)
1.
Baran, M.F., Gokdogan, O., Bayhan, Y., 2021. Determination of energy balance and greenhouse gas emissions (GHG) of cotton cultivation in Turkey: A case study from Bismil district of Diyarbakır province. J. Tekirdag Agric. Faculty 18(2), 322-332. https://doi.org/10.33462/jotaf....
 
2.
Baran, M.F., Demir, C., Elicin, A.K., Gokdogan, O., 2023. Energy use efficiency and greenhouse gas emissions (GHG) analysis of garlic cultivation in Turkey. Int. J. Agric. Biol. Eng. 16(4), 63-67. https://doi.org/10.25165/j.ija....
 
3.
Barry, G.H., Caruso, M., Gmitter, F.G., 2020. Commercial scion varieties. In The Genus Citrus, Talon, M., Caruso, M., Gmitter, F.G., Eds. Woodhead Publishing, Cambridge, UK, 83-104. https://doi.org/10.1016/B978-0....
 
4.
Benti, N.E., Chaka, M.D., Semie, A.G., 2023. Forecasting renewable energy generation with machine learning and deep learning: current advances and future prospects. Sustainability, mdpi, 15,7087. https://doi.org/10.3390/su1509....
 
5.
Bhatti, M.I., Do, H.Q., 2019. Recent development in copula and its applications to the energy, forestry and environmental sciences. Int. J. Hydrogen Energy 44(36), 19453-19473. https://doi.org/10.1016/j.ijhy....
 
6.
Carvalho, D.U.D., Junior, R.P.L., Yada, I.F.U., Tazima, Z.H., 2022. Trifoliate orange related rootstocks enhance the horticultural performance of ‘shamouti’ sweet orange under humid subtropical condition. Agriculture mdpi 12(11), 1782. https://doi.org/10.3390/agricu....
 
7.
Demir, C., 2023. Analyses of energy use and greenhouse gas emissions (GHG) in watermelon production. Int. J. Agric. Biol. Eng. 16(5), 221-225. https://doi.org/10.25165/j.ija....
 
8.
Demir, C., Gokdogan, O., 2023. Determination of energy use efficiency and greenhouse gas emissions in peach production. Int. J. Agric. Biol. Eng. 16(2), 165-170. https://doi.org/10.25165/j.ija....
 
9.
Ertek, N., Demir, O., Keskin, A., 2020. Marketing margins and economic analysis of the orange market in Turkey. Atatürk Univ. J. Agric. Faculty 51(1), 1-7. https://doi.org/10.17097/ataun....
 
10.
FAOSAT, 2021. Food and Agriculture Organization. Statistical database. http://www.fao.org/faostat/en/....
 
11.
Farjam, A., Omid, M., Akram, A., Fazel-Niari, Z., 2014. Neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields. J. Agric. Sci. Technol. (JAST) 2014, 16(4), 767-778. https://dorl.net/dor/20.1001.1....
 
12.
GDM, 2022. Republic of Türkiye Ministry of Agriculture, Forestry General Directorate of Meteorology, https://mgm.gov.tr/?il=Adana.
 
13.
Gokdogan, O., Demir, C., Baran, M.F., 2024. Energy balance and greenhouse gas emissions of cherry production in Turkey. Appl. Fruit Sci. 66, 1269-1274. https://doi.org/10.1007/s10341....
 
14.
Houshyar, E., Dalgaard, T., Tarazgar, M.H., Jorgensen, U., 2015. Energy input for tomato production what economy says and what is good for the environment. J. Cleaner Production 89, 99-109. https://doi.org/10.1016/j.jcle....
 
15.
Karaagac, H.A., Baran, M.F., Mart, D., Bolat, A., Eren, O., 2019. Determination of energy usage efficiency and greenhouse gas (GHG) emissions in chickpea production (the case of Adana province). Eur. J. Sci. Technol. 16, 41-50. https://doi.org/10.31590/ejosa....
 
16.
Klikocka, H., Kasztelan, A., Zakrzewska, A., Wyłupek, T., Szostak, B., Skwaryło-Bednarz, B., 2019. The energy efficiency of the production and conversion of spring triticale grain into bioethanol. Agronomy mdpi, 9(8), 423. https://doi.org/10.3390/agrono....
 
17.
Macedo, I., Terra, J.A., Siri-Prieto, G., Velazco, J.I., Carrasco-Letelier, L., 2021. Rice pasture agroecosystem intensification affects energy use efficiency. J. Cleaner Production 278, 123771. https://doi.org/10.1016/j.jcle....
 
18.
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., Mobtaker, H.G., 2014. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. J. Clean. Prod. 65, 311-317. https://doi.org/10.1016/j.jcle....
 
19.
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., 2016. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. J. Saudi Soc. Agric. Sci. 15, 38-47. https://doi.org/10.1016/j.jssa....
 
20.
Niedbala, G., 2019. Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield. J. Integrative Agric. 18(1), 54-61. https://doi.org/10.1016/S2095-....
 
21.
Oguz, H.I., Baran, M.F., Gokdogan, O., Eren, O., Solak, M., 2022. Energy balance and greenhouse gas (GHG) emissions of organic fig (Ficus carica L.) production in Turkey. Erwerbs-Obstbau 64, 61-67. https://doi.org/10.1007/s10341....
 
22.
Ozbek, O., Celik, S.A., Colak, I.A., Gokdogan, O., 2024. Energy balance and greenhouse gas (GHG) emissions of sesame (Sesamum indicum L.) production in Turkey. Turkish J. Agric. – Food Sci. Technol. 12(6), 911-917. https://doi.org/10.24925/turja....
 
23.
Sarkar, B., Das, B., Sundaram, P., Mali, S., Anurag, A., Upadhyaya, A., Chandra, N. Bhatt, B., Kumar, A., 2022. Energy input output analysis and greenhouse gas emission in okra and tomato production in Chotanagpur plateau region of India.Environ. Develop. Sust. 25(11),1-20. https://doi.org/10.1007/s10668....
 
24.
Seydosoglu, S., Baran, M.F., Turan, N., Alfarraj, S., Albasher, G., 2023. Greenhouse gas emission and energy analysis of vetch (Vicia sativa L.) cultivation. J. King. Saud. Univ. 35(3), 102541. https://doi.org/10.1016/j.jksu....
 
25.
Yılmaz, A., Bayav, A., 2022. Determination of energy efficiency in almond production according to variety: a case study in Turkey. Erwerbs-Obstbau 65(4), 971-979. https://doi.org/10.1007/s10341....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top