RESEARCH PAPER
Monitoring of winter wheat growth in categories of frost damage and production potential using SAR and optical images
 
More details
Hide details
1
Department of Agricultural Machines, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic
 
2
Department of Vehicles and Ground Transport, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic
 
3
Department of Mathematics, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic
 
 
Final revision date: 2024-10-22
 
 
Acceptance date: 2024-11-08
 
 
Publication date: 2025-01-28
 
 
Corresponding author
Jitka Kumhálová   

Department of Vehicles and Ground Transport, Czech University of Life Sciences Prague, Czech Republic
 
 
Int. Agrophys. 2025, 39(2): 99-111
 
Data availability: The data used for this paper is available upon request from the corresponding author. The data used in this study were downloaded from the Copernicus Open Access Hub and Czech Cadastre.
HIGHLIGHTS
  • Information from SAR images can be used to assess within field variability
  • RVI, VH and VV polarization showed differences between observed categories
  • Logistic regression model resulted better for higher spatial resolutions
  • Modern statistical methods bring information from SAR closer to practical use
KEYWORDS
TOPICS
ABSTRACT
Remote sensing plays an increasingly important role in agriculture, especially in monitoring the quality of agricultural crops. Optical sensing is often limited in Central Europe due to cloud cover; therefore, synthetic aperture radar data is increasingly being used. However, synthetic aperture radar data is limited by more difficult interpretation mainly due to the influence of speckles. For this reason, its use is often limited to larger territorial units and field blocks. The main aim of this study therefore was to verify the possibility of using satellite synthetic aperture radar images to assess the within-field variability of winter wheat. The lowest radar vegetation index values corresponded to the area of the lowest production potential and the greatest damage to the stand. Also for VH and VV polarizations, the highest values corresponded to the area of the lowest stand quality. Qualitative changes in the stand across the zones defined by frost damage and production potential were assessed with the help of the logistic regression model with resampled data for 10, 50, and 100 m pixel size. The best correlation coefficients were achieved at a spatial resolution of 50 m for both options. The F-score still yielded a promising result ranging from 0.588 to 0.634 for frost damage categories. The regression model of the production potential performed slightly better in terms of the F-score, recall, and precision at higher resolutions. It was proved that modern statistical methods could be used to reduce problems associated with speckles of radar images for practical purposes.
ACKNOWLEDGEMENTS
We would like to thank to the management of agriculture company Lupofyt for providing agronomic data.
FUNDING
This work was supported by the Ministry of Agriculture of the Czech Republic, research project NAZV QK 22010014; and Internal Grant of Faculty of Engineering CZU 2021:31150/1312/3113.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES (62)
1.
Atzberger, C., 2013. Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sensing 5, 949-981 5, 949-981. https://doi.org/10.3390/rs5084....
 
2.
Balážová, K., Chyba, J., Kumhálová, J., Mašek, J., Petrásek, S., 2021. Monitoring of Khorasan (Triticum turgidum ssp. Turanicum) and modern kabot spring wheat (Triticum aestivum) varieties by UAV and sensor technologies under different soil tillage. Agronomy 11(7), 1348. https://doi.org/10.3390/agrono....
 
3.
Bao, X., Zhang, R., Lv, J., Wu, R., Zhang, H., Chen, J., et al., 2023. Vegetation descriptors from Sentinel-1 SAR data for crop growth monitoring. ISPRS J. Photogrammetry Remote Sensing 203, 86-114. https://doi.org/10.1016/j.ispr....
 
4.
Barlow, K.M., Christy, B.P., O’Leary, G.J., Riffkin, P.A., Nuttall, J.G., 2015. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Res. https://doi.org/10.1016/j.fcr.....
 
5.
Brown, S.C.M., Quegan, S., Morrison, K., Bennett, J.C., Cookmartin, G., 2003. High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Transactions on Geoscience and Remote Sensing 41, 1602-1610. https://doi.org/10.1109/TGRS.2....
 
6.
Challinor, A.J., Wheeler, T.R., Craufurd, P.Q., Slingo, J.M., 2005. Simulation of the impact of high temperature stress on annual crop yields. Agric. Meteorol. 135, 180-189. https://doi.org/10.1016/j.agrf....
 
7.
Charbonneau, F., Trudel, M., Fernandes, R., 2005. Use of dual polarization and multi-incidence SAR for soil permeability mapping. Proc. 2005 Advanced Synthetic Aperture Radar (ASAR) workshop, St-Hubert, QC, Canada.
 
8.
Chen, D., Hu, H., Liao, C., Ye, J., Bao, W., Mo, J., et al., 2023. Crop NDVI time series construction by fusing Sentinel-1, Sentinel-2, and environmental data with an ensemble-based framework. Comput. Electron. Agric. 215. https://doi.org/10.1016/j.comp....
 
9.
Dalmannsdottir, S., Jørgensen, M., Rapacz, M., Østrem, L., Larsen, A., Rødven, R., et al., 2017. Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense). Physiol. Plant. 160, 266-281. https://doi.org/10.1111/ppl.12....
 
10.
de Blas, C.S., Valcarce-Diñeiro, R., Sipols, A.E., Sánchez Martín, N., Arias-Pérez, B., Santos-Martín, M.T., 2021. Prediction of crop biophysical variables with panel data techniques and radar remote sensing imagery. Biosyst. Eng. 205, 76-92. https://doi.org/10.1016/j.bios....
 
11.
Domínguez, J.A., Kumhálová, J., Novák, P., 2015. Winter oilseed rape and winter wheat growth prediction using remote sensing methods. 61, 410-416. https://doi.org/10.17221/412/2....
 
12.
El Hajj, M., Baghdadi, N., Zribi, M., Belaud, G., Cheviron, B., Courault, D., et al., 2016. Soil moisture retrieval over irrigated grassland using X-band SAR data. Remote Sens.Environ. 176, 202-218. https://doi.org/10.1016/j.rse.....
 
13.
ESA - Copernicus [WWW Document], n.d. URL https://www.esa.int/Applicatio... (accessed 4.2.24).
 
14.
Evans, L.T., 1996. Crop evolution, adaptation and yield. Cambridge University Press, UK, ISBN 0-521-29588-0, 500 pp.
 
15.
Fieuzal, R., Baup, F., Marais-Sicre, C., 2013. Monitoring wheat and rapeseed by using synchronous optical and radar satellite data-from temporal signatures to crop parameters estimation. ARS 02, 162-180. https://doi.org/10.4236/ars.20....
 
16.
Filipponi, F., 2019. Sentinel-1 GRD Preprocessing Workflow. Proceedings 18, 11-18 https://doi.org/10.3390/ECRS-3....
 
17.
Fowler, D.B., Limin, A.E., Ritchie, J.T., 1999. Low-Temperature tolerance in cereals: Model and genetic interpretation. Crop Sci. 39, 626-633. https://doi.org/10.2135/cropsc....
 
18.
Frate, F. Del, Ferrazzoli, P., Guerriero, L., Strozzi, T., Wegmuller, U., Cookmartin, G., et al., 2004. Wheat cycle monitoring using radar data and a neural network trained by a model. IEEE Trans. Geosci. Remote Sensing 42, 35-44. https://doi.org/10.1109/TGRS.2....
 
19.
Fuglie, K., 2021. Climate change upsets agriculture. Nature Climate Change 2021 11:4 11, 294-295. https://doi.org/10.1038/s41558....
 
20.
Gao, Y., Pan, Y., Zhu, X., Li, L., Ren, S., Zhao, C., et al., 2023. FARM: A fully automated rice mapping framework combining Sentinel-1 SAR and Sentinel-2 multi-temporal imagery. Comput. Electron. Agric. 213. https://doi.org/10.1016/j.comp....
 
21.
Guilpart, N., Grassini, P., Sadras, V.O., Timsina, J., Cassman, K.G., 2017. Estimating yield gaps at the cropping system level. Field Crops Res. 206, 21-32. https://doi.org/10.1016/j.fcr.....
 
22.
Harfenmeister, K., Spengler, D., Weltzien, C., 2019. Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data. Remote Sensing 11, 1569. https://doi.org/10.3390/rs1113....
 
23.
Hernández, M., Borges, A.A., Francisco-Bethencourt, D., 2022. Mapping stressed wheat plants by soil aluminum effect using C-band SAR images: implications for plant growth and grain quality. Precis. Agric. 23, 1072-1092. https://doi.org/10.1007/s11119....
 
24.
Jelínek, Z., Kumhálová, J., Chyba, J., Wohlmuthová, M., Madaras, M., Kumhála, F., 2020. Landsat and Sentinel-2 images as a tool for the effective estimation of winter and spring cultivar growth and yield prediction in the Czech Republic. Int. Agrophys. 34, 391-406. https://doi.org/10.31545/intag....
 
25.
Jin, X., Yang, G., Xu, X., Yang, H., Feng, H., Li, Z., et al., 2015. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 Data. Remote Sensing 7, 13251-13272. https://doi.org/10.3390/rs7101....
 
26.
Kajla, M., Yadav, V.K., Khokhar, J., Singh, S., Chhokar, R.S., Meena, R.P., et al., 2015. Increase in wheat production through management of abiotic stresses: A review. J. Appl. Natural Sci. 7, 1070-1080. https://doi.org/10.31018/jans.....
 
27.
Kaplan, G., Fine, L., Lukyanov, V., Manivasagam, V.S., Tanny, J., Rozenstein, O., 2021. Normalizing the local incidence angle in sentinel-1 imagery to improve leaf area index, vegetation height, and crop coefficient estimations. Land (Basel) 10, 680. https://doi.org/10.3390/land10....
 
28.
Kim, Y., Jackson, T., Bindlish, R., Lee, H., Hong, S., 2012. Radar vegetation index for estimating the vegetation water content of rice and soybean. IEEE Geoscience and Remote Sensing Letters 9, 564-568. https://doi.org/10.1109/LGRS.2....
 
29.
Kumar Sahadevan, D., Rao Sitiraju, S., Dinesh Kumar, S., Srinivasa Rao, S., Sharma, J.R., 2013. Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton, Indian Cartographer.
 
30.
Kumhálová, J., Kumhála, F., Kroulík, M., Matějková, Š., 2011. The impact of topography on soil properties and yield and the effects of weather conditions. Precis. Agric. 12, 813-830. https://doi.org/10.1007/s11119....
 
31.
Kumhálová, J., Kumhála, F., Novák, P., Matějková, Š., 2013. Airborne laser scanning data as a source of field topographical characteristics. https://pse.agriculturejournal... 59, 423-431. https://doi.org/10.17221/188/2....
 
32.
Kumhálová, J., Zemek, F., Novák, P., Brovkina, O., Mayerová, M., 2014. Use of Landsat images for yield evaluation within a small plot. Plant Soil Environ. 60, 501-506. https://doi.org/10.17221/515/2....
 
33.
Landsat Science [WWW Document], n.d. URL https://landsat.gsfc.nasa.gov/ (accessed 4.2.24).
 
34.
Lapaz Olveira, A.M., Castro-Franco, M., Saínz Rozas, H.R., Carciochi, W.D., Balzarini, M., Avila, O., et al., 2023. Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen. Precis. Agric. 24, 2592-2606. https://doi.org/10.1007/s11119....
 
35.
Madaras, M., Mayerová, M., Kumhálová, J., Lipavská, J., 2018. The influence of mineral fertilisers, farmyard manure, liming and sowing rate on winter wheat grain yields. Plant Soil Environ. 64, 38-46. https://doi.org/10.17221/703/2....
 
36.
Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M.E., García-Santos, G., Fernandes, R., et al., 2012. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 120, 91-101. https://doi.org/10.1016/j.rse.....
 
37.
Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., et al., 2020. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens Environ. 247, 111954. https://doi.org/10.1016/j.rse.....
 
38.
Maphanyane, J.G., Mapeo, R.B., Akinola, M.O., (Eds), 2018. Handbook of Research on Geospatial Science and Techno-logies. IGI Global. https://doi.org/10.4018/978-1-....
 
39.
Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., et al., 2009. Das BBCH-System zur Codierung der phänologischen Entwicklungsstadien von Pflanzen-Geschichte und Veröffentlichungen, J. Kulturpflanzen.
 
40.
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K.P., 2013. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 1, 6-43. https://doi.org/10.1109/MGRS.2....
 
41.
Nasrallah, A., Baghdadi, N., El Hajj, M., Darwish, T., Belhouchette, H., Faour, G., et al., 2019. Sentinel-1 data for winter wheat phenology monitoring and mapping. Remote Sensing (Basel) 11. https://doi.org/10.3390/rs1119....
 
42.
Nasrallah, A., Baghdadi, N., Mhawej, M., Faour, G., Darwish, T., Belhouchette, H., et al., 2018. A Novel approach for mapping wheat areas using high resolution sentinel-2 images. Sensors 2018, 18, 2089 18, 2089. https://doi.org/10.3390/s18072....
 
43.
Oerke, E.-C., 1994. Crop production and crop protection: estimated losses in major food and cash crops. Elsevier.
 
44.
Persson, T., Bergjord Olsen, A.K., Nkurunziza, L., Sindhöj, E., Eckersten, H., 2017. Estimation of crown temperature of winter wheat and the effect on simulation of frost tolerance. J Agron. Crop Sci. 203, 161-176. https://doi.org/10.1111/jac.12....
 
45.
Qu, X., Zhou, J., Gu, X., Wang, Y., Sun, Q., Pan, Y., 2023. Monitoring maize lodging severity based on multi-temporal Sentinel-1 images using time-weighted dynamic time warping. Comput. Electron. Agric. 215. https://doi.org/10.1016/j.comp....
 
46.
Rapacz, M., Ergon, Å., Höglind, M., Jørgensen, M., Jurczyk, B., Østrem, L., et al., 2014. Overwintering of herbaceous plants in a changing climate. Still more questions than answers. Plant Sci. 225, 34-44. https://doi.org/10.1016/j.plan....
 
47.
Rapacz, M., Macko-Podgórni, A., Jurczyk, B., Kuchar, L., 2022. Modeling wheat and triticale winter hardiness under current and predicted winter scenarios for Central Europe: A focus on deacclimation. Agric. Meteorol. 313. https://doi.org/10.1016/j.agrf....
 
48.
Rataj, V., Kumhálová, J., Macák, M., Barát, M., Galambošová, J., Chyba, J., et al., 2022. Long-term monitoring of different field traffic management practices in cereals production with support of satellite images and yield data in context of climate change. Agronomy 12, 128. https://doi.org/10.3390/agrono....
 
49.
Rouse, J., Haas, R.H., Schell, J.A., Deering, D., 1973. Monitoring vegetation systems in the great plains with ERTS.
 
50.
Saad El Imanni, H., El Harti, A., Panimboza, J., 2022. Investigating Sentinel-1 and Sentinel-2 data efficiency in studying the temporal behavior of wheat phenological stages using google Earth engine. Agriculture 12, 1605 12, 1605. https://doi.org/10.3390/agricu....
 
51.
Sánchez, B., Rasmussen, A., Porter, J.R., 2014. Temperatures and the growth and development of maize and rice: a review. Glob. Chang. Biol. 20, 408-417. https://doi.org/10.1111/gcb.12....
 
52.
Šíp, V., Chrpová, J., Žofajová, A., Milec, Z., Mihalik, D., Pánková, K., et al., 2011. Evidence of selective changes in winter wheat in middle-European environments reflected by allelic diversity at loci affecting plant height and photoperiodic response. J. Agric. Sci. 149, 313-326. https://doi.org/10.1017/S00218....
 
53.
Special Report on Climate Change and Land - IPCC site [WWW Document], n.d. . https://reliefweb.int/sites/re... web.int/files/resources/4.-SPM_Approved_Microsite_FINAL.pdf. URL https://www.ipcc.ch/srccl/ (accessed 4.2.24).
 
54.
Thielert, W., 2006. A unique product: The story of the imidacloprid stress shield. Pflanzenschutz-Nachr. Bayer 59, 73-86. https://doi.org/10.1097/01.HJ.....
 
55.
Trudel, M., Charbonneau, F., Leconte, R., 2012. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Canadian J. Remote Sensing 38, 514-527.
 
56.
Tůma, L., Kumhálová, J., Kumhála, F., Krepl, V., 2022. The noise-reduction potential of radar vegetation index for crop management in the Czech Republic. Precis. Agric. 23, 450-469. https://doi.org/10.1007/s11119....
 
57.
Vaghela, B.N., Solanki, H.A., Kalubarme, M.H., 2020. Winter wheat growth assessment using temporal normalized phenology index (TNPI) in Bhuj Taluka, Gujarat State, India. Remote Sens. Appl. 20. https://doi.org/10.1016/j.rsas....
 
58.
Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rüdiger, C., Strauss, P., 2018. Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study. Remote Sensing (Basel) 10. https://doi.org/10.3390/rs1009....
 
59.
Wiseman, G., McNairn, H., Homayouni, S., Shang, J., 2014. RADARSAT-2 polarimetric sar response to crop biomass for agricultural production monitoring. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7, 4461-4471. https://doi.org/10.1109/JSTARS....
 
60.
WMS – Climatic regions of the Czech Republic: https://micka.cenia.cz/record/... . Accessed: 13.2.2024.
 
61.
Ya’nan, Z.H.O.U., Binyao, W.A.N.G., Weiwei, Z.H.U., Li, F.E.N.G., Qisheng, H.E., Xin, Z., et al., 2024. Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions. Comput. Electron. Agric. 219. https://doi.org/10.1016/j.comp....
 
62.
Zhong, X., Mei, X., Li, Y., Yoshida, H., Zhao, P., Wang, X., et al., 2008. Changes in frost resistance of wheat young ears with development during jointing stage. J. Agron. Crop. Sci. 194, 343-349. https://doi.org/10.1111/j.1439....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top