RESEARCH PAPER
Physical and thermal modification of selected lignocellulosic raw materials
 
More details
Hide details
1
Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
 
2
Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
 
3
ECOTECH-COMPLEX-Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Skłodowska University, Głęboka 39, 20-033 Lublin, Poland
 
4
Department of Biosystems Engineering, University of Life Sciences in Poznań, Wojska Polskiego 50, 60-627 Poznań, Poland
 
 
Final revision date: 2023-02-15
 
 
Acceptance date: 2023-02-24
 
 
Publication date: 2023-03-15
 
 
Corresponding author
Karol Kupryaniuk   

Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612, Lublin, Poland
 
 
Int. Agrophys. 2023, 37(2): 141-149
 
HIGHLIGHTS
  • The aim was to determine the effect of pre-tretreatment on the physical and chemical properties and biogas efficiency of lignocellulosic raw materials. The study also relied on FTIR spectroscopy measurements to determine changes in the tested samples during the extrusion-cooking process at the molecular level occurring. The results in individual tests differed depending on the raw material used.
KEYWORDS
TOPICS
ABSTRACT
The impact of the modification of the plasticizing system of the TS-45 single-screw extruder (by ZMCh Metalchem, Gliwice, Poland) with L/D = 12 is discussed in the article. The modification involved the reconfiguration of the extruder screw to achieve certain selected physical characteristics of the lignocellulosic raw materials which are not commonly used in biogas facilities. Shredded lignocellulosic raw materials (corn straw, wheat straw, and hay) were moistened to achieve a 25% water content and extruded at three rotational speeds of the extruder screw: 70, 90, and 110 rpm. During extrusion-cooking, the process efficiency and energy intensity were determined. The obtained extrudates were studied in order to establish selected physical properties (water solubility index, water absorption index and bulk density). In addition, the research included an analysis of microscopic images and the efficiency of cumulative methane and biogas production per fresh mass, dry mass, and dry organic mass. In addition, an analysis of the FTIR infrared spectra of the studied extruded samples was performed, these contained lignocellulose structures, and revealed explicit changes at the molecular level. The use of the extrusion technique as a pretreatment of the plant biomass allowed for the lignocellulosic bonds to be broken, which loosened the structure of the material and thus changed its physical properties and biogas efficiency.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
REFERENCES (35)
1.
Asadieraghi M., and Daud W.M.A.W., 2014. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Convers. Manag., 82, 71-82. https://doi.org/10.1016/j.enco....
 
2.
Bouasla A., Wójtowicz A., Zidoune M.N., Olech M., Nowak R., Mitrus M., and Oniszczuk A., 2016. Gluten-free precooked rice-yellow pea pasta: effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. J. Food Sci., 81, C1070-C1079. https://doi.org/10.1111/1750-3....
 
3.
Cieślik M., Dach J., Lewicki A., Smurzyńska A., Janczak D., Pawlicka-Kaczorowska J., Boniecki P., and Cyplik P., 2016. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy, 115(2), 1495-1502. https://doi.org/10.12911/22998....
 
4.
Combrzyński M., Matwijczuk A., Wójtowicz A., Oniszczuk T., Karcz D., Szponar J., Niemczynowicz A., Bober D., Mitrus M., Kupryaniuk K., Stasiak M., Dobrzański B., and Oniszczuk A., 2020. Potato starch utilization in ecological loose-fill packaging materials-sustainability and characterization. Materials, 13, 1390. https://doi.org/10.3390/ma1306....
 
5.
Combrzyński M., Wójtowicz A., Oniszczuk A., Karcz D., Szponar J., and Matwijczuk AP., 2022. Selected physical and spectroscopic properties of TPS moldings enriched with durum wheat bran. Materials (Basel), 20, 15(14), 5061. https://doi:10.3390/ma15145061.
 
6.
Dach J., Czekała W., Boniecki P., Lewicki A., and Piechota T., 2014. Specialised internet tool for biogas plant modelling and marked analysing. AMR, 909. 305-310. https://doi:10.4028/www.scient....
 
7.
Fei X., Jia W., Wang J., Chen T., and Ling Y., 2020. Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation. Int. J. Biol. Macromol., 145, 733-739. https://doi.org/10.1016/j.ijbi....
 
8.
Gabhane J., William S.P., Vaidya A.N., Das S., and Wate S.R., 2015. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose. Waste Manage., 40, 92-99. https://doi.org/10.1016/j.wasm....
 
9.
Kowalczyk-Juśko A., Kupryaniuk K., Oniszczuk T., Wójtowicz A., Janczak D., Smurzyńska A., Jóźwiakowski K., and Czechlowski M., 2017. Applicability of Jerusalem artichoke in agricultural biogas plants as maize silage alternative. Proc. 3rd Int. Conf. Energy Environment, University of Porto, Porto, Portugal. https://www.fep.up.pt/conferen....
 
10.
Kupryaniuk K., Oniszczuk T., Combrzyński M., Dach J., and Czekała W., 2020a. Process efficiency and energy consumption during the extrusion of lignocellulosic materials. IOP Conference Series. Earth Environ. Sci., 505, 012040, 1-8. https://doi.org/10.1088/1755-1....
 
11.
Kupryaniuk K., Oniszczuk T., Combrzyński M., Czekała W., and Matwijczuk A., 2020b. The influence of corn straw extrusion pretreatment parameters on methane fermentation performance. Materials, 13(13), 3003, 1-16. https://doi.org/10.3390/ma1313....
 
12.
Kupryaniuk K., Oniszczuk T., Combrzyński M., Lisiecka K., and Janczak D., 2022. Influence of modification of the plasticizing system on the extrusion-cooking process and selected physicochemical properties of rapeseed and buckwheat straws. Materials, 15(14), 5039. https://doi.org/10.3390/ma1514....
 
13.
Kupryaniuk K., Oniszczuk T., Lisiecka K., and Kłapsia S., 2019. Impact of extrusion-cooking technique on lignocellulosic biomass. Badania i Rozwój Młodych Naukowców w Polsce. Uprawa roślin i ochrona środowiska. Młodzi Naukowcy, Poznań, 33-39. ISBN:978-83-66392-47-2.
 
14.
Li W., Habiba K., Zhe Z., Zhang R., Liu G., Chang C., and Eva T., 2018. Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl. Energy, 226, 1219-1228. https://doi.org/10.1016/j.apen....
 
15.
Lisiecka K., Wójtowicz A., and Gancarz M., 2021a. Characteristics of newly developed extruded products supplemented with plants in a form of microwave-expanded snacks. Materials (Basel), 14(11):2791. ttps://doi:10.3390/ma14112791.
 
16.
Lisiecka K., Wójtowicz A., and Sujak A., 2021b. Effect of composition and processing conditions on selected properties of potato-based pellets and microwave-expanded snacks supplemented with fresh beetroot pulp. Pol. J. Food Nutr. Sci., 71(2), 211-236. https://doi.org/10.31883/pjfns....
 
17.
Liu Z., Jinzhi H., Yiqing Y., Mengyi W., and Li A., 2022. Effect of pretreatment by freeze vacuum drying on solid-state anaerobic digestion of corn straw. Fermentation, 8, 6, 259. https://doi.org/10.3390/fermen....
 
18.
Marks-Bielska R., Bielski S., Novikova A., and Romaneckas K., 2019. Straw stocks as a source of renewable energy. A case study of a district in Poland. Sustainability, 11, 4714. https://doi.org/10.3390/su1117....
 
19.
Matysiak A., Wójtowicz A., and Oniszczuk T., 2018. Process efficiency and Energy consumption during the extrusion of potato multigrain formulations. Agric. Eng., 22, 2, 49-57. https://doi.org/10.1515/agrice....
 
20.
Mitrus M., Wójtowicz A., Kocira S., Kasprzycka A., Szparaga A., Oniszczuk T., Combrzyński M., Kupryaniuk K., and Matwijczuk A., 2020. Effect of extrusion-cooking conditions on the pasting properties of extruded white and red bean seeds. Int. Agrophys., 34(1), 25-32. https://doi.org/10.31545/intag....
 
21.
Niedziółka I., Szpryngiel M., and Zaklika B., 2012. Analysis of physical and mechanical properties of pellets made of selected plant materials. Autobusy, 11, 79-86.
 
22.
Ong H.C., Yu K.L., Chen W.H., Pillejera M.K., Bi X., Tran K.Q., and Pétrissans M., 2021. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renew. Sust. Energ. Rev., 152, 111698. https://doi.org/10.1016/j.rser....
 
23.
Perea-Moreno M.A., Samerón-Manzano E., and Perea-Moreno A.J., 2019. Biomass as renewable energy: Worldwide research trends. Sustainability, 11, 863. https://doi.org/10.3390/su1103....
 
24.
Sadowska U., Matwijczuk A., Niemczynowicz A., Dróżdż T., and Żabiński A., 2019. Spectroscopic examination and chemometric analysis of essential oils obtained from peppermint herb (Mentha piperita L.) and caraway fruit (Carum carvi L.) subjected to pulsed electric fields. Processes, 7, 466. https://doi.org/10.3390/pr7070....
 
25.
Vandenbossche V., Brault J., Vilarem G., Hernández-Meléndez O., Vivaldo-Lima E., Hernández-Luna M., Barzana E., Duque A., Manzanares P., and Ballesteros M., 2014. A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and biocatalytic enzymatic hydrolysis in a twin-screw extruder. Ind. Crops Prod., 55, 258-266. https://doi.org/10.1016/j.indc....
 
26.
Varma V.S., Das S., Sastri C.V., and Kalamdhad A.S., 2017. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste. Sustain. Environ. Res., 27(6), 265-272. https://doi.org/10.1016/j.serj....
 
27.
Victorin M., Davidsson Å., and Wallberg O., 2020. Characterization of mechanically pretreated wheat straw for biogas production. Bioenergy. Res., 13, 833-844. https://doi.org/10.1007/s12155....
 
28.
Wang M., Wang J., Li Y., Li Q., Li P., Luo L., Zhen F., Zheng G., and Sun Y., 2022. Low-temperature pretreatment of biomass for enhancing biogas production: A Review. Fermentation, 8, 10, 562. https://doi.org/10.3390/fermen....
 
29.
Xu J., Xu X., Liu Y., Li H., and Liu H., 2015. Effect of microbiological inoculants DN-1 on lignocellulose degradation during co-composting of cattle manure with rice straw monitored by FTIR and SEM. Environ. Prog. Sustain., 35(2), 345-351. https://doi:10.1002/ep.12222.
 
30.
Zając T., Synowiec A., Oleksy A., Macuda J., Klimek-Kopyra A., and Borowiec F., 2017. Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height. Int. Agrophys., 31(2), 273-285. https:/doi:10.1515/intag-2016-0041.
 
31.
Zhang L., Yang Z., Li S., Wang X., and Lin R., 2020. Comparative study on the two-step pyrolysis of different lignocellulosic biomass: Effects of components. JAAP, 152, 104966. https://doi.org/10.1016/j.jaap....
 
32.
Zhang Y.Q., Fu E.H., and Liang J.H., 2008. Effect of ultrasonic waves on the saccharification processes of lignocellulose. Chem. Eng. Technol., 31(10), 1510-1515. https://doi.org/10.1002/ceat.2....
 
33.
Zhang Y., Dian-Ming J., Zhen-lei X., Hao Z., Long-Hai L., Hai-Tao Ch., Shuang L., Rui L., and Sheng-Ming Z., 2021. Optimization of wheat straw pretreatment process parameters for straw mulch mat. BioResources, 16, 3827-3839. https://doi.org/10.15376/biore....
 
34.
Zheng J. and Rehmann L., 2014. Extrusion pretreatment of lignocellulosic biomass: A review. Int. J. Mol. Sci., 15, 18967-18984. https://doi.org/10.3390/ijms15....
 
35.
Zhuang J., Li M., Pu Y., Ragauskas A.J., and Yoo C.G., 2020. Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl. Sci., 10(12), 4345. https://doi.org/10.3390/app101....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top