RESEARCH PAPER
Reliability characteristics of first-tier photovoltaic panels for agrivoltaic systems – practical consequences
 
More details
Hide details
1
Department of Economic Theories, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
 
2
Department of Quality and Dependability of Machines, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
 
3
Department of Electrotechnology, Czech Technical University in Prague, Technicka 2, 16627 Prague, Czech Republic
 
4
Department of Mathematics and Physics, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
 
5
Manager, Solarmonitoring, Ltd., Podebradova 275, 43923 Lenesice, Czech Republic
 
 
Final revision date: 2024-07-20
 
 
Acceptance date: 2024-08-08
 
 
Publication date: 2024-09-06
 
 
Corresponding author
Martin Libra   

Department of Mathematics and Physics, Czech University of Life Sciences Prague, Czech Republic
 
 
Int. Agrophys. 2024, 38(4): 383-391
 
HIGHLIGHTS
  • Weibull analysis was used for determining the PV panels reliability.
  • Data from many large PV power plants were analyzed.
  • The operating time to failure is lower than manufacturers declare
KEYWORDS
TOPICS
ABSTRACT
A vast majority of PV panel suppliers declare a PV panel lifetime in the range of 20-30 years (typically 25 years). Our data from long-term monitoring of many PV power plants indicate that first-tier PV panels at many PV power plants, in moderate climate, start to fail after about 10-12 years. Compared to standard PV systems, the agrivoltaic systems are exposed to extraordinary influences of agriculture like dust, humidity, vibrations, fertilizers etc. Our studies compare the quality of PV panel components within last 25 years. We performed long-term monitoring of 85 PV plants, including agrivoltaics, worldwide too. PV panel failures within strings cause subsequent damage to multistring inverters. As inverters are more expensive than the PV panels, the total expenses for PV panel and PV inverter replacement are growing quickly after 10-12 years of the PV power plant operation. Hence, it is very important to study the reliability characteristics of PV panels to predict their real lifetime and to predict PV power plant service expenses.
FUNDING
The research was funded by the internal research project, Czech University of Life Sciences Prague, IGA 2024: 31160/1312/3107.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES (42)
1.
Abdallah, A.A., Ali, K., Kivambe, M., 2023. Performance and reliability of crystalline-silicon photovoltaics in desert climate. Solar Energy 249, 268-277, doi:10.1016/j.solener.2022.11.042.
 
2.
Aleš, Z., Pavlu, J., Kučera, M., Legát, V., 2019. Reliability characteristics of mechanical objects of agricultural machines. In proc. 7th Int. Conf. Trends in Agric. Eng. 2019, Prague, 17th-20th September, 26-31, ISBN 978-80-213-2953-9.
 
3.
Aly, S.P., Ahzi, S., Barth, N., Abdallah, A., 2020. Numerical analysis of the reliability of photovoltaic modules based on the fatigue life of the copper interconnects. Solar Energy 212, 152-168, doi:10.1016/j.solener.2020.10.021.
 
4.
Atsu, D., Seres, I., Aghaei, M., Farkas, I., 2020. Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan. Renewable Energy 162, 285-295, doi:10.1016/j.renene.2020.08.021.
 
5.
Bajenescu, T.M., 2020. Some Reliability Aspects of Photovoltaic Modules. In: Reliability and Ecological Aspects of Photovoltaic Modules. IntechOpen, doi:10.5772/intechopen.88641, ISBN:978-1-78984-822-9.
 
6.
Bandou, F., Arab, A.H., Belkaid, M.S., Logerais, P.O., Riou, O., Charki, A., 2015. Evaluation performance of photovoltaic modules after a long time operation in Saharan environment. Int. J. Hydrogen Energy 40(39), 13839-13848, doi:10.1016/j.ijhydene.2015.04.091.
 
7.
Beránek, V., Olšan, T., Libra, M., Poulek, V., Sedláček, J., Dang, M.Q., et al., 2018. New monitoring system for photovoltaic power plants’ management. Energies 11(10), 2495, doi:10.3390/en11102495.
 
8.
Berrehal, R., Benisaad, S., 2016. Determining the optimal periodicity for preventive replacement of mechanical spare parts. Mechanika 22(2), 156-161, doi:10.5755/j01.mech.22.2.12269.
 
9.
Božiková, M., Bilčík, M., Madola, V., Szabóová, T., Kubík, L., Lendelová, J., et al., 2021, The effect of azimuth and tilt angle changes on the energy balance of photovoltaic system installed in the Southern Slovakia Region. Appl. Sci. 11, 8998, doi:10.3390/app11198998.
 
10.
Dhimish, M., Alrashidi, A., 2020. Photovoltaic degradation rate affected by different weather conditions: A Case Study Based on PV Systems in the UK and Australia, Electronics 9(4), 650, doi:10.3390/electronics9040650.
 
11.
Dunlop, E.D., Halton, D., 2006. The Performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Progress in Photovoltaics, 14(1), 53-64, doi:10.1002/pip.627.
 
12.
Eder, G.C., Voronko, Y., Oreski, G., Mühleisen, W., Knausz, M., Omazic, A., et al., 2019. Error analysis of aged modules with cracked polyamide backsheets. Solar Energy Materials Solar Cells 203, 110194, doi:10.1016/j.solmat.2019.110194.
 
13.
Garmabaki, A.H.S., Ahmadi, A., Ahmadi, M., 2016. Maintenance optimization using multi-attribute utility theory. in: current trends in reliability, availability, maintainability and safety. Cham: Springer Int. Publishing Switzerland, 13-25, ISBN:978-3-319-23596-7.
 
14.
Ha, S.W., Park, S.H., Eom, J.Y., Oh, M.S., Cho, G.Y., Kim, E.J., 2020. Parameter calibration for a TRNSYS BIPV model using in situ test data. Energies 13(18), 4935, doi:10.3390/en13184935.
 
15.
Cheema H..A, Sadia Ilyas, Heewon Kang, Hyunjung Kim, 2024. Comprehensive review of the global trends and future perspectives for recycling of decommissioned photovoltaic panels. Waste Management 174, 187–202, doi:10.1016/j.wasman.2023.11.025.
 
16.
International standard IEC 61649:2008 – Weibull Analysis, 62 pages.
 
17.
IRENA (International Renewable Energy Agency), 2016. End-of-life management: Solar photovoltaic panels. Int. Renewable Energy Agency and the Int. Energy Agency Photovoltaic Power Systems. [cit. 2024-04-10], available from: https://www.irena.org/-/media/....
 
18.
Kempe, M.D., Jorgensen, G.J., Terwilliger, K.M., McMahon, T.J., Kennedy, C.E., Borek, T.T., 2006. Ethylene-vinyl acetate potential problems for photovoltaic packaging. IEEE 4th World Conf. Photovoltaic Energy Conversion (WCPEC-4), Waikoloa, Hawaii, USA, 7-12 May, ISBN 1-4244-0016-3.
 
19.
Kim, J., Rabelo, M., Padi, S.P., Yousuf, H., Eun-Chel Cho, E., Yi, J., 2021. A review of the degradation of photovoltaic modules for life expectancy. Energies 14(14), 4278, doi:10.3390/en14144278.
 
20.
Kurtz, S., 2013. Photovoltaic Module Reliability Workshop 2013 - Technical Report NREL/TP -5200-60167. Colorado: NREL, 26-27 Feb 2013. [cit. 2024-05-30], available from: https://www.nrel.gov/docs/fy14....
 
21.
Legát, V., 2016. Management and maintenance engineering (in Czech). Professional Publishing, Prague, 622 p., ISBN:978-80-7431-163-5.
 
22.
Legát, V., Mošna, F., Aleš, Z., Jurča, V., 2017. Preventive maintenance models – higher operational reliability. Maintenance and Reliability 19(1), 134-141, doi:10.17531/ein.2017.1.19.
 
23.
Libra, M., Mrázek, D., Tyukhov, I., Severová, L., Poulek, V., Mach, J., et al., 2023. Reduced real lifetime of PV panels – Economic consequences. Solar Energy 259, 229-234, doi: 10.1016/j.solener.2023.04.063.
 
24.
Libra, M., Kozelka, M., Šafránková, J., Belza, R., Poulek, V., Beránek, V., et al., 2024. Agrivoltaics: dual usage of agricultural land for sustainable development. Int. Agrophys. 38, 121-126, doi:10.31545/intagr/184175.
 
25.
McIntosh, K.R., Powell, N.E., Norris, A.W., Cotsell, J.N., Ketola, B.M., 2011. The effect of damp-heat and UV aging tests on the optical properties of silicone and EVA encapsulants, Progress in Photovoltaics 19(3), 294-300, doi:10.1002/pip.1025.
 
26.
Miller, D.C., Muller, M.T., Kempe, M.D., Araki, K., Kennedy, Ch.E., Kurtz, S.R., 2013. Durability of polymeric encapsulation materials for concentrating photovoltaic systems. Progress in Photovoltaics 21(4), 631-651, doi:10.1002/pip.1241.
 
27.
Omazic, A., Oreski, G., Halwachs, M., Eder, G.C., Hirschl, C., Neumaier, L., et al., 2019. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Solar Energy Materials Solar Cells 192, 123-133, doi:10.1016/j.solmat.2018.12.027.
 
28.
Osterwald, C.R., McMahon T.J., 2009. History of accelerated and qualification testing of terrestrial photovoltaic modules: a literature review. Progress in Photovoltaics 17(1), 11-33, doi:10.1002/pip.861.
 
29.
Poulek, V., Matuška, T., Libra, M., Kachalouski, E., Sedlácek, J., 2018. Influence of increased temperature on energy production of roof integrated PV panels. Energy Buildings 166, 418-425, doi:10.1016/j.enbuild.2018.01.063.
 
30.
Poulek, V., Dang, M.Q., Libra, M., Beránek, V., Šafránková, J., 2020. PV panel with integrated lithium accumulators for BAPV applications – one year thermal evaluation. IEEE J. Photovoltaics 10(1), 150-152, doi:10.1109/JPHOTOV.2019.2953391.
 
31.
Poulek, V., Šafránková, J., Černá, L., Libra, M., Beránek, V., Finsterle, T., et al., 2021. PV panel and PV inverter damages caused by combination of edge delamination, water penetration, and high string voltage in moderate climate. IEEE J. Photovoltaics 11(2), 561-565, doi:10.1109/JPHOTOV.2021.3050984.
 
32.
Poulek, V., Tyukhov, I., Beránek, V., 2023. On site renovation of degraded PV panels – Cost and environmental effective technology. Solar Energy 263, 111956, doi:10.1016/j.solener.2023.111956.
 
33.
Quarter, P.B., Grimaccia, F., Leva S., Mussetta, M., Aghaei, M., 2014. Light unmanned aerial vehicles (UAVs) for cooperative inspection of PV plants. IEEE J. Photovoltaics 4(4), 1107-1113, doi:10.1109/JPHOTOV.2014.2323714.
 
34.
Rahman, M.M., Hasanuzzaman, M., Rahim, N.A., 2015. Effects of various parameters on PV-module power and efficiency. Energy Conversion Manag. 103, 348-358, doi:10.1016/j.enconman.2015.06.067.
 
35.
Rinne, H., 2008. The Weibull Distribution: A Handbook. New York: Chapman and Hall/CRC, 808 p. Eng. Technol., Mathematics Statistics, ISBN 9780429142574, doi:10.1201/9781420087444.
 
36.
Sharma, V., Chandel, S.S., 2016. A novel study for determining early life degradation of multi-crystalline-silicon photovoltaic modules observed in western Himalayan Indian climatic conditions. Solar Energy 134, 32-44, doi:10.1016/j.solener.2016.04.023.
 
37.
Shukla, A.K., Sudhakar, K., Baredar, P., 2017. Recent advancement in BIPV product technologies: A review. Energy Buildings 140, 188-195, doi:10.1016/j.enbuild.2017.02.015.
 
38.
Singh, R., Sharma, M., Yadav, K., 2022. Degradation and reliability analysis of photovoltaic modules after operating for 12 years: A case study with comparisons. Renewable Energy 196, 1170-1176, doi:10.1016/j.renene.2022.07.048.
 
39.
Skoczek, A., Sample, T., Dunlop, E.D., 2009. The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Progress in Photovoltaics 17(4), 227-240, doi:10.1002/pip.874.
 
40.
Van Dyk, E.E., Chamel, J.B., Gxasheka, A.R., 2005. Investigation of delamination in an edge-defined film-fed growth photovoltaic module. Solar Energy Materials Solar Cells 88(4), 403-411, doi:10.1016/j.solmat.2004.12.004.
 
41.
Vazquez, M., Rey-Stolle, I., 2008. Photovoltaic module reliability model based on field degradation studies. Progress Photovoltaics 16(5), 419-433, doi:10.1002/pip.825.
 
42.
Voronko, Y., Eder, G.C., Breitwieser, Ch., Mühleisen, W., Neumaiser, L., Feldbacher, S., et al., 2021. Repair options for PV modules with cracked backsheets. Energy Sci. Eng. 9(9), 1583-1595, doi:10.1002/ese3.936.
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top