RESEARCH PAPER
Searching, identifying and characterizing antagonistic isolates to control Neofabraea representatives causing bull’s-eye rot in apples
More details
Hide details
1
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
2
Institute of Horticulture Production, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
Final revision date: 2025-01-20
Acceptance date: 2025-02-03
Publication date: 2025-03-17
Corresponding author
Karolina Oszust
Department of Soil and Plant System, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
Int. Agrophys. 2025, 39(2): 145-164
HIGHLIGHTS
- B. velezensis and T. koningiopsis inhibited 65% of Neofabraea isolates
- T. koningiopsis used chitinase, B. velezensis relied on glycogen degradation
- Isolates showed minimal resistance genes, low risk for environmental impacts
KEYWORDS
TOPICS
ABSTRACT
Apple bull’s eye rot (BER), caused by Neofabraea representatives, is a major challenge for apple production. This study aimed to identify microbial antagonists capable of suppressing Neofabraea by leveraging soil microorganisms from six distinct apple orchard land management systems. Key candidates, Bacillus velezensis (B134/22, B233/22, B267/22) and Trichoderma koningiopsis (G779/22) inhibited 65% of Neofabraea isolates, indicating their strong potential for biocontrol. T. koningiopsis produced chitinase and β-glucanase, while B. velezensis relied on glycogen degradation, suggesting diverse biocontrol strategies. Antibiotic resistance profiles showed minimal resistance genes, reducing environmental risks. Sensitivity to fungicides was assessed, with T. koningiopsis sensitive to Siarkol and B. velezensis to Zato and Luna fungicides, supporting their compatibility with orchard practices. Tested isolates showed susceptibility to some chemical substances used in apple orchard practice (e.g. antibiotics, copper(II) sulfate, fusidic acid, or promethazine). These findings highlight the importance of integrating biocontrol agents with agrochemical use, ensuring sustainability in apple production while minimizing environmental impact.
FUNDING
This paper was financed by the National Centre for Research and Development within the framework of the project LIDER XII (acronym: APPAT(f)REE), contract number LIDER/7/0054/L-12/20/NCBR/2021.
CONFLICT OF INTEREST
The Authors declare they have no conflict of interest.
REFERENCES (107)
1.
Aguilar, C.G., Mazzola, M., Xiao, C.L., 2018. Control of bull’s-eye rot of apple caused by Neofabraea perennans and Neofabraea kienholzii using pre- and postharvest fungicides. Plant Dis. 102, 905-910.
https://doi.org/10.1094/PDIS-0....
2.
Aguilar, C.G., Mazzola, M., Xiao, C.L., 2019. Timing of perennial canker development in apple trees caused by Neofabraea perennans and Neofabraea kienholzii. Plant Dis. 103, 555-562.
https://doi.org/10.1094/PDIS-0....
3.
Ahmadi-Afzadi, M., Tahir, I., Nybom, H., 2013. Impact of harvesting time and fruit firmness on the tolerance to fungal storage diseases in an apple germplasm collection. Postharvest Biol. Technol. 82, 51-58.
https://doi.org/10.1016/j.post....
4.
Alcock, B.P., Huynh, W., Chalil, R., Smith, K. W., Raphenya A.R., Wlodarski, M.A., et al., 2023. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51, D690-D699.
https://doi.org/10.1093/nar/gk....
5.
Alenezi, F.N., Slama, H.B., Bouket, A.C., Cherif-Silini, H., Silini, A., Luptakova, L., et al., 2021. Bacillus velezensis: A treasure house of bioactive compounds of medicinal, biocontrol and environmental importance. Forests 12.
https://doi.org/10.3390/f12121....
6.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Molecular Biol. 215(3), 403-410.
https://doi.org/10.1016/S0022-....
8.
Aramaki, T., Blanc-Mathieu, R., Endo, H., Ohkubo, K., Kanehisa, M., Goto, S., et al., 2020. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold, Bioinformatics 36(7), 2251-2252.
https://doi.org/10.1093/bioinf....
9.
Baquero, F., Martínez, J.L., Lanza, V.F., Rodríguez-Beltrán, J., Galán, J.C., San Millán, A., et al., 2021. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 34.
https://doi.org/10.1128/CMR.00....
10.
Berić, T., 2018. Identification and antibiotic resistance of Bacillus spp. isolates from natural samples. Arch. Biol. Sci. 70, 70(3), 581-588.
https://doi.org/10.2298/ABS180....
11.
Blin, K., Shaw, S., Augustijn, H.E., Reitz, Z. L., Biermann, F., Alanjary, M., et al., 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research, 51(W1), W46-W50.
https://doi.org/10.1093/nar/gk....
12.
Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., et al., 2021. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49(D1), D344-D354.
https://doi.org/10.1093/nar/gk....
13.
Bonaterra, A., Badosa, E., Daranas, N., Francés, J., Roselló, G., Montesinos, E., 2022. Bacteria as biological control agents of plant diseases. Microorganisms 10.
https://doi.org/10.3390/microo....
14.
Brauer, V.S., Rezende, C.P., Pessoni, A.M., De Paula, R.G., Rangappa, K.S., Nayaka, S.C., et al., 2019. Antifungal agents in agriculture: friends and foes of public health. Biomolecules 9.
https://doi.org/10.3390/biom91....
15.
Bryk, H., Rutkowski, K.P., 2012. Efficacy of alternative methods in controlling of bull’s eye rot (Pezicula spp.) (in Polish). Postępy w Ochronie Roślin 52(3), 727-732.
16.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009. BLAST+: architecture and applications, BMC Bioinformatics 10, 421.
https://doi.org/10.1186/1471-2....
17.
Cao, D., Li, X., Cao, J., Wang, W., 2013. PCR Detection of the three Neofabraea pathogenic species responsible for apple Bull’s Eye Rot. Adv. Microbiol. 03, 61-64.
https://doi.org/10.4236/aim.20....
18.
Chen, L., Heng, J., Qin, S., Bian, K., 2018. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS One 13, 1-22.
https://doi.org/10.1371/journa....
19.
Chojniak, J., Jałowiecki, Ł., Dorgeloh, E., Hegedusova, B., Ejhed, H., Magnér, J., et al., 2015. Application of the BIOLOG system for characterization of Serratia marcescens ss marcescens isolated from onsite wastewater technology (OSWT). Acta Biochim. Pol. 62, 799-805.
http://dx.doi.org/10.18388/abp....
20.
Cock, P.J.A., Fields, C.J., Goto, N., Heuer, M.L., Rice, P.M., 2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38(6), 1767-1771.
https://doi.org/10.1093/nar/gk....
21.
Corral-Ramos, C., Roncero, M.I.G., 2015. Glycogen catabolism, but not its biosynthesis, affects virulence of Fusarium oxysporum on the plant host. Fungal Genet. Biol. 77, 40-49.
https://doi.org/10.1016/j.fgb.....
22.
Courvalin, P., 1994. Minireview transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 38, 1447-1451.
23.
Dai, M., Lu, J., Wang, Y., Liu, Z., Yuan, Z., 2012. In vitro development and transfer of resistance to chlortetracycline in Bacillus subtilis. J. Microbiol. 50, 807-812.
https://doi.org/10.1007/s12275....
24.
Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E., Courvalin, P., 2007. Modes and modulations of antibiotic resistance gene expression. Clin. Microbiol. Rev. 20, 79-114.
https://doi.org/10.1128/cmr.00....
25.
Derikvand, F., Bazgir, E., El Jarroudi, M., Darvishnia, M., Mirzaei Najafgholi, H., Laasli, S.E., et al., 2023. Unleashing the potential of bacterial isolates from apple tree rhizosphere for biocontrol of Monilinia laxa: A promising approach for combatting Brown rot disease. J. Fungi 9, 1-15.
https://doi.org/10.3390/jof908....
26.
Fira, D., Dimkić, I., Berić, T., Lozo, J., Stanković, S., 2018. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285, 44-55.
https://doi.org/10.1016/j.jbio....
27.
Gariépy, T.D., Lévesque, C.A., de Jong, S.N., Rahe, J.E., 2003. Species-specific identification of the Neofabraea pathogen complex associated with pome fruits using PCR and multiplex DNA amplification. Mycol. Res. 107, 528-536.
https://doi.org/10.1017/S09537....
28.
Gómez, P., Paterson, S., De Meester, L., Liu, X., Lenzi, L., Sharma, M.D., et al., 2016. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat. Commun. 7, 1-8.
https://doi.org/10.1038/ncomms....
29.
Grishechkina, S.D., Ermolova, V.P., Kovalenko, T.K., Antonets, K.S., Belousova, M., Yakhno, V.V., et al., 2019. Polyfunctional properties of the Bacillus thuringiensis var. thuringiensis industrial strain 800/15. Biol. 54, 494-504.
https://doi.org/10.15389/agrob....
30.
Grzegorczyk, M., Szalewicz, A., Żarowska, B., Połomska, X., Wątorek, W., Wojtatowicz, M., 2015. Microorganisms in biological protection of plants against fungal diseases (in Polish). Acta Sci. Pol., Biotechnol. 14, 1-58.
32.
Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G., 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8), 1072-1075.
https://doi.org/10.1093/bioinf....
33.
Haynes, R.J., Swift, R.S., 1985. Effects of soil acidification on the chemical extractability of Fe, Mn, Zn and Cu and the growth and micronutrient uptake of highbush blueberry plants. Plant Soil 84, 201-212.
https://doi.org/10.1007/BF0214....
34.
Hernández-Plaza, A., Szklarczyk, D., Botas, J., Cantalapiedra, C. P., Giner-Lamia, J., Mende, D.R., Kirsch, R., Rattei, T., Letunic, I., Jensen, L.J., Bork, P., von Mering, C., Huerta-Cepas, J., 2023. eggNOG 6.0: enabling comparative genomics across 12 535 organisms. Nucleic Acids Res. 51(D1), D389-D394.
https://doi.org/10.1093/nar/gk....
35.
Jain, C., Rodriguez-R.L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S., 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9(1), 5114.
https://doi.org/10.1038/s41467....
36.
Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang, L., et al., 2021. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. Basic Microbiol. 61, 1049-1070.
https://doi.org/10.1002/jobm.2....
37.
Jiang, C.-H., Liao, M.-J., Wang, H.-K., Zheng, M.-Z., Xu, J.-J., Guo, J.-H., 2018. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol. Control 126, 147-157.
https://doi.org/10.1016/j.bioc....
38.
Jiménez-Delgadillo, R., Valdés-Rodríguez, S.E., Olalde-Portugal, V., Abraham-Juárez, R., García-Hernández, J.L., 2018. Effect of pH and temperature on the growth and antagonistic activity of Bacillus subtilis on Rhizoctonia solani. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 36, 256-275.
39.
Jin, X., Cai, R., Wang, R., Cao, Y., Dai, Z., Hu, Z., et al., 2023. Antibiotic resistance characterization and molecular characteristics of Enterococcus species isolated from combination probiotic preparations in China. Foodborne Pathog. Dis. 21, 36-43.
https://doi.org/10.1089/fpd.20....
40.
Jin, X., Zhang, L., Cao, Y., Dai, Z., Ge, X., Cai, R., et al., 2024. Antibiotic resistance characterization, virulence factors and molecular characteristics of Bacillus species isolated from probiotic preparations in China. J. Glob. Antimicrob. Resist.
https://doi.org/10.1016/j.jgar..., In press.
41.
Johnson, K.B., Temple, T.N., Achala N.K.C., 2023. Acidifying spray suspensions of oxytetracycline and kasugamycin enhances their effectiveness for Fire blight control in apple and pear. Phytopathology 113, 2205-2214.
https://doi.org/10.1094/PHYTO-....
42.
Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., et al., 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9), 1236-1240.
https://doi.org/10.1093/bioinf....
44.
Käll, L., Krogh, A., Sonnhammer, E.L.L., 2004. A combined transmembrane topology and signal peptide prediction method. J. Molecular Biol. 338(5), 1027-1036.
https://doi.org/10.1016/j.jmb.....
45.
Koller, W., Parker, D., Turechek, W., Rosenberger, D., Wilcox, W., Carroll, J., et al., 2005. Fungicide resistance of apple scab: status quo and management options. New York Fruit Q. 13, 9-17.
48.
Kumbar, B., Mahmood, R., Nagesha, S.N., Nagaraja, M.S., Prashant, D.G., Kerima, O.Z., et al., 2019. Field application of Bacillus subtilis isolates for controlling late blight disease of potato caused by Phytophthora infestans. Biocatal. Agric. Biotechnol. 22, 101366.
https://doi.org/10.1016/j.bcab....
49.
Kurnik, V., Gaberšek, V., Unuk, T., Tojnko, S., Vogrin, A., Vajs, S., et al., 2012. Influence of Alternative Copper Fungicide Formulations on Copper Content in Apple Fruits. Erwerbs-Obstbau 54, 161-170.
https://doi.org/10.1007/s10341....
51.
Lima, G., De Curtis, F., De Cicco, V., 2008. Interaction of microbial biocontrol agents and fungicides in the control of postharvest diseases. Stewart Postharvest Rev. 4.
52.
Lin, H., Jiang, X., Yi, J., Wang, X., Zuo, R., Jiang, Z., et al., 2018. Molecular identification of Neofabraea species associated with bull’s-eye rot on apple using rolling-circle amplification of partial EF-1α sequence. Can. J. Microbiol. 64, 57-68.
https://doi.org/10.1139/cjm-20....
53.
Lipa, T., Szot, I., Dobrzański, B., Kapłan, M., 2019. The assessment of ten apple cultivars and their susceptibility on bruising after storage and shelf-life of fruit treated with 1-MCP. Acta Sci. Pol. Hortorum Cultus 18(6) 2019, 129-140.
https://10.24326/asphc.2019.6.....
54.
Liu, R., Li, J., Zhang, F., Zheng, D., Chang, Y., Xu, L., Huang, L., 2021. Biocontrol activity of Bacillus velezensis D4 against apple Valsa canker. Biol. Control 163, 104760.
https://doi.org/10.1016/j.bioc....
55.
Love, J., Palmer, J., Stajich, J., Esser, T., Kastman, E., Winter, D., 2018. Nextgenusfs/Funannotate: Funannotate v1.5.1. Zenodo.
https://doi.org/10.5281/zenodo....
56.
Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE: A Program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25(5), 955-964.
https://doi.org/10.1093/nar/25....
57.
Luo, M., Chen, Y., Huang, Q., Huang, Z., Song, H., Dong, Z., 2023. Trichoderma koningiopsis Tk905: an efficient biocontrol, induced resistance agent against banana Fusarium wilt disease and a potential plant-growth-promoting fungus. Front. Microbiol. 14, 1-11.
https://doi.org/10.3389/fmicb.....
58.
Łysiak, G., Szot I., 2023. The possibility of using fruit-bearing plants of temperate climate in the treatment and prevention of diabetes. Life 13(9).
https://doi.org/10.3390/life13....
59.
Madhupriyaa, D., Baskar, M., Sherene Jenita Rajammal, T., Kuppusamy, S., Rathika, S., Umamaheswari, T., et al., 2024. Efficacy of chelated micronutrients in plant nutrition. Commun. Soil Sci. Plant Anal. 55, 3609-3637.
https://doi.org/10.1080/001036....
60.
Martignoni, M.M., Kolodny, O., 2024. Microbiome transfer from native to invasive species may increase invasion risk and shorten invasion lag. bioRxiv 2023.08.28.555072.
https://doi.org/10.1101/2023.0....
62.
Mayerhofer, G., Schwaiger-Nemirova, I., Kuhn, T., Girsch, L., Allerberger, F., 2009. Detecting streptomycin in apples from orchards treated for Fire blight. J. Antimicrob. Chemother. 63, 1076-1077.
https://doi.org/10.1093/jac/dk....
63.
Mikheenko, A., Valin, G., Prjibelski, A., Saveliev, V., Gurevich, A., 2016. Icarus: visualizer for de novo assembly evaluation. Bioinformatics 32(21), 3321-3323.
https://doi.org/10.1093/bioinf....
64.
Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., Gurevich, A., 2018. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34(13), i142-i150.
https://doi.org/10.1093/bioinf....
65.
Mohammadi, B., Gorkina, N., Pérez-Reyes, M.E., Smith, S.A., 2023. Profiling toxin genes and antibiotic resistance in Bacillus cereus isolated from pre-launch spacecraft. Front. Microbiol. 14, 1-8.
https://doi.org/10.3389/fmicb.....
67.
Naylor, M.A., Kaiser, H., Jones, C.L.W., 2013. The effect of dosing with sodium hydroxide (NaOH-) on water pH and growth of Haliotis midae in an abalone serial-use raceway. Aquac. Int. 21, 467-479.
https://doi.org/10.1007/s10499....
69.
O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., Veigh, R.M., et al., 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation, Nucleic Acids Res. 44(D1), D733-D745.
https://doi.org/10.1093/nar/gk....
70.
Oleszek, M., Pecio, Ł., Kozachok, S., Lachowska-Filipiuk, Ż., Oszust, K., Frąc, M., 2019. Phytochemicals of apple pomace as prospect bio-fungicide agents against mycotoxigenic fungal species – in vitro experiments. Toxins 11(6), 361.
https://doi.org/10.3390/toxins....
71.
Ons, L., Bylemans, D., Thevissen, K., Cammue, B.P.A., 2020. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8, 1-19.
https://doi.org/10.3390/microo....
72.
Orr, R., Nelson, P.N., 2018. Impacts of soil abiotic attributes on Fusarium wilt, focusing on bananas. Appl. Soil Ecol. 132, 20-33.
https://doi.org/10.1016/j.apso....
73.
Oszust, K., Pylak, M., Frąc, M., 2021. Trichoderma-based biopreparation with prebiotics supplementation for the naturalization of raspberry plant rhizosphere. Int. J. Mol. Sci. 22.
https://doi.org/10.3390/ijms22....
74.
Oszust, K., Szpilska, K., Gryta, A., Panek, J., Pylak, M., Lipa, T., et al., 2023a. New biotechnological solutions in biocontrol and molecular diagnostics of Neofabraea spp. in apples. – A review. Postharvest Biol. Technol. 204.
https://doi.org/10.1016/j.post....
75.
Oszust, K., Pinzari, F., Frąc, M., 2023b. Selection of redox dye and inoculum conditions for the optimisation of respirometric indices in Verticillium and Trichoderma. Int. Agrophys. 37, 279-292.
https://doi.org/10.31545/intag....
76.
Palumbo, J.D., Yuen, G.Y., Jochum, C.C., Tatum, K., Kobayashi, D.Y., 2005. Mutagenesis of β-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95, 701-707.
https://doi.org/10.1094/PHYTO-....
77.
Pampulha, M.E., Loureiro-Dias, M.C., 1989. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl. Microbiol. Biotechnol. 31, 547-550.
https://doi.org/10.1007/BF0027....
78.
Panek, J., Frąc, M., Bilińska-Wielgus, N., 2016. Comparison of chemical sensitivity of fresh and long-stored heat-resistant Neosartorya fischeri environmental isolates using Biolog Phenotype MicroArray system. PLoS One 11, 4-8.
https://doi.org/10.1371/journa....
79.
Patel, J., Teli, B., Bajpai, R., Meher, J., Rashid, M., Mukherjee, A., et al., 2019. 13 - Trichoderma-mediated biocontrol and growth promotion in plants: an endophytic approach. In: Kumar, A., Singh, A.K., Choudhary, K.K.B.T.-R. of P.G.P.M. in S.A. and N. (Eds). Woodhead Publ. 219-239.
https://doi.org/10.1016/B978-0....
80.
Pearson, W. R., Lipman, D. J., 1988. Improved tools for biological sequence comparison., Proc. Natl. Acad. Sci. U.S.A. 85(8) 2444-2448.
https://doi.org/10.1073/pnas.8....
81.
Pertile, G., Panek, J., Oszust, K., Siczek, A., Frac, M., 2018. Intraspecific functional and genetic diversity of Petriella setifera. PeerJ 2018.
https://doi.org/10.7717/peerj.....
82.
Poveda, J., Eugui, D., 2022. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biol. Control 176, 105100.
https://doi.org/10.1016/j.bioc....
83.
Prjibelski, A.D., Vasilinetc, I., Bankevich, A., Gurevich, A., Krivosheeva, T., Nurk, S., et al., 2014. ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics 30(12), i293-i301.
https://doi.org/10.1093/bioinf....
84.
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., Korobeynikov, A., 2020. Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics 70(1), e102.
https://doi.org/10.1002/cpbi.1....
85.
Pylak, M., Oszust, K., Frąc, M., 2019. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 18, 597-616.
https://doi.org/10.1007/s11157....
86.
Pylak, M., Oszust, K., Frąc, M., 2020. Searching for new beneficial bacterial isolates of wild raspberries for biocontrol of phytopathogens-antagonistic properties and functional characterization. Int. J. Mol. Sci. 21, 1-33.
https://doi.org/10.3390/ijms21....
87.
Ruangwong, O.U., Pornsuriya, C., Pitija, K., Sunpapao, A., 2021. Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. J. Fungi 7, 4, 276.
https://doi.org/10.3390/jof704....
89.
Silva, V., Yang, X., Fleskens, L., Ritsema, C. J., Geissen, V., 2022. Environmental and human health at risk – Scenarios to achieve the Farm to Fork 50% pesticide reduction goals. Env. Int. 165, 107296.
https://doi.org/10.1016/j.envi....
90.
Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M., 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics 31(19), 3210-3212.
https://doi.org/10.1093/bioinf....
91.
Sottocornola, G., Baric, S., Nocker, M., Stella, F., Zanker, M., 2022. Picture-based and conversational decision support to diagnose post-harvest apple diseases. Expert Syst. Appl. 189, 116052.
https://doi.org/10.1016/j.eswa....
93.
Teufel, F., Armenteros, A.J.J., Johansen, A.R., Gíslason, M.H., Pihl, S.I., Tsirigos, K.D., et al., 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology 40(7), 1023-1025.
https://doi.org/10.1038/s41587....
94.
Tyc, O., van den Berg, M., Gerards, S., van Veen, J.A., Raaijmakers, J.M., de Boer, W., et al., 2014. Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front. Microbiol. 5, 1-10.
https://doi.org/10.3389/fmicb.....
95.
Wang, B.T., Hu, S., Yu, X.Y., Jin, L., Zhu, Y.J., Jin, F.J., 2020. Studies of cellulose and starch utilization and the regulatory mechanisms of related enzymes in Fungi. Polymers 12, 1-17.
https://doi.org/10.3390/polym1....
96.
Wani, A.K., Akhtar, N., Sher, F., Navarrete, A.A., Américo-Pinheiro, J.H.P., 2022. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch. Microbiol. 204, 1-16.
https://doi.org/10.1007/s00203....
97.
Wash, P., Batool, A., Mulk, S., Nazir, S., Yasmin, H., Mumtaz, S., et al., 2022. Prevalence of antimicrobial resistance and respective genes among Bacillus spp., a versatile bio-fungicide. Int. J. Environ. Res. Public Health 19, 22, 14997.
https://doi.org/10.3390/ijerph....
99.
Wood, P. N., Fisher, B.M. 2017. The effect of fungicides on spore germination, mycelial growth and lesion development of Phlyctema vagabunda (syn: Neofabraea alba) (bull’s eye rot of apples). New Zealand Plant Protection 70, 112-119.
https://doi.org/10.30843/nzpp.....
100.
You, C., Zhang, C., Kong, F., Feng, C., Wang, J., 2016. Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl-mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol. Eng. 91, 119-125.
https://doi.org/10.1016/j.ecol....
101.
Yuan, H., Shi, B., Wang, L., Huang, T., Zhou, Z., Hou, H., et al., 2022. Isolation and characterization of Bacillus velezensis strain P2-1 for biocontrol of apple postharvest decay caused by Botryosphaeria dothidea. Front. Microbiol. 12, 1-11.
https://doi.org/10.3389/fmicb.....
102.
Zawadzka, K., Oszust, K., Pylak, M., Panek, J., Gryta, A., Frąc, M., 2024. Beneath the apple trees - Exploring soil microbial properties under Malus domestica concerning various land management practices. Appl. Soil Ecol. 203, 105642.
https://doi.org/10.1016/j.apso....
103.
Zhai, Z., Cui, C., Li, X., Yan, J., Sun, E., Wang, C., et al., 2023. Prevalence, antimicrobial susceptibility, and antibiotic resistance gene transfer of Bacillus strains isolated from pasteurized milk. J. Dairy Sci. 106, 75-83.
https://doi.org/10.3168/jds.20....
104.
Zhang, N., Nunan, N., Hirsch, P.R., Sun, B., Zhou, J., Liang, Y., 2021. Theory of microbial coexistence in promoting soil–plant ecosystem health. Biol. Fertil. Soils 57, 897-911.
https://doi.org/10.1007/s00374....
105.
Zhang, Y., Lorsbach, B.A., Castetter, S., Lambert, W.T., Kister, J., Wang, N.X., et al., 2018. Physicochemical property guidelines for modern agrochemicals. Pest Manag. Sci. 74, 1979-1991.
https://doi.org/10.1002/ps.503....
106.
Zia, R., Taj, A., Younis, S., Bukhari, S.Z., Latif, F., Feroz, Y., et al., 2022. 12 – Application of nanosensors for pesticide detection. In: Denizli, A., Nguyen, T.A., Rajendran, S., Yasin, G., Nadda, A.K.B.T.-N. for S.A. (Eds), Micro Nano Technologies. Elsevier 259-302.
https://doi.org/10.1016/B978-0....
107.
Zydlik, Z., Zydlik, P., Wieczorek, R., 2021. The effects of bioinoculants based on mycorrhizal and Trichoderma spp. Fungi in an apple tree nursery under replantation conditions. Agronomy 11, 11, 2355.
https://doi.org/10.3390/agrono....