RESEARCH PAPER
Simple, responsive and cost effective simultaneous quantification of Ga(III) and In(III) in environmental water samples
 
More details
Hide details
1
Maria Curie-Skłodowska University, Chemical Faculty, Department of Analytical Chemistry and Instrumental Analysis, M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
 
 
Acceptance date: 2018-12-30
 
 
Publication date: 2019-04-25
 
 
Int. Agrophys. 2019, 33(2): 161-166
 
KEYWORDS
TOPICS
ABSTRACT
The simultaneous determination of Ga(III) and In(III) in environmental water samples was described. The procedure was based on adsorptive stripping voltammetry using an in situ plated bismuth film electrode as a working electrode. In order to obtain low detection limits and satisfactory separations of gallium and indium peaks on the voltammogram, cupferron was used as a complexing agent. The optimum composition of the supporting electrolyte was found to be: 0.1 mol l-1 acetate buffer (pH=5.0), 2 × 10-4 mol l-1 cupferron, 2 × 10-4 mol l-1 Bi(III), optimal voltammetric parameters were found to be: accumulation potential -0.9 V, accumulation time 60 s. The linear range of Ga(III) as well as In(III) was observed over a concentration range from 2.5 × 10-8 mol l-1 to 1.5 × 10-6 mol l-1. The method was satisfactorily applied to the simultaneous quantification of gallium and indium in environmental water samples. This facilitated a promising application of the recommended procedure for monitoring the environment, which is necessary to evaluate the soil-plant system.
REFERENCES (28)
1.
Alfantazi A.M., and Moskalyk R.R., 2003. Processing of indium: a review. Miner. Eng., 16, 687-694.
 
2.
Bermejo-Barrera P., Martinez-Alfonso N., and Bermejo-Barrera A., 2001. Separation of gallium and indium from ores matrix by sorption on Amberlite XAD-2 coated with PAN. Fresenius J. Anal. Chem., 369, 191-194. https://doi.org/10.1007/s00216....
 
3.
Choua W.L., Wang C.T., Yanga K.C., and Huanga Y.H. J., 2008. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process. J. Hazard. Mater., 160, 6-12. https://doi.org/10.1016/j.jhaz....
 
4.
Daalkhaijav U., Yirmibesoglu O.D., Walker S., Menguc Y., 2018. Rheological modification of liquid metal for additive manufacturing of stretchable electronics. Adv. Mater. Technol., 3, Article Number: 1700351. https://doi.org/10.1002/admt.2....
 
5.
Font O., Querol X., Juan R., Casado R., Ruiz C.R., and Lopez-Soler A., Coca P., and García Peña F., 2007. Recovery of gallium and vanadium from gasification fly ash. J. Hazard Mater., 139, 413-423. https://doi.org/10.1016/j.jhaz....
 
6.
Grabarczyk M., and Wardak C., 2014. New voltammetric strategy for sensitive and selective determination of gallium using a cupferron as a complexing agent. J. Environ. Sci. Health, Part A, 49, 1142-1148. https://doi.org/10.1080/109345....
 
7.
Grabarczyk M. and Wasąg J., 2015. Determination of trace amounts of Ga(III) by adsorptive stripping voltammetry with in situ plated bismuth film electrode. Talanta, 144, 1091-1095. https://doi.org/10.1016/j.tala....
 
8.
Grabarczyk M. and Wasąg J., 2016. Ultratrace determination of indium in natural water by adsorptive stripping voltammetry in the presence of cupferron as a complexing agent. J. Electrochem. Soc., 163, H218-H222. https://doi.org/10.1149/2.1001....
 
9.
Hayashibe Y., Kurosaki M., Takekawa F, and Kuroda R., 1989. Determination of traces of gallium and indium in ores by electrothermal-atomization atomic absorption spectrometry with matrix modification. Microchim. Acta, II, 163-171. https://doi.org/10.1007/bf0124....
 
10.
Królicka A., Bobrowski A., Kalcher K., Mocak J., Svancara I., and Vytras K., 2003. Study on catalytic adsorptive stripping voltammetry of trace cobalt at bismuth film electrodes. Electroanalysis, 15, 1859-1863. https://doi.org/10.1002/elan.2....
 
11.
Królicka A., Pauliukaite R., Svancara I., Metelka R., Bobrowski A., Norkus E., Kalcher K., and Vytras K., 2002. Bismuth-film-plated carbon paste electrodes. Electrochem. Commun., 4, 193-196. https://doi.org/10.1007/s00216....
 
12.
Liu H.M., Jiang J.K., and Lin Y.H., 2012. Simultaneous determination of gallium(III) and indium(III) in urine and water samples with cloud point extraction and by inductively coupled plasma optical emission spectrometry. Anal. Letter., 45, 2096-2107. https://doi.org/10.1080/000327....
 
13.
Medvecky L. and Briancin J., 2002. Possibilities of simultaneous determination of indium and gallium in binary InGa alloys by anodic stripping voltammetry in acetate buffer. Chem. Pap., 58, 93-100.
 
14.
Merian E., Anke M., Ihnat M., and Stoeppler M., 2004. Elements and their compounds in the environment. Viley-VCH Verlag GmbH and Co. KGaA, Weinheim. https://doi.org/10.1002/978352....
 
15.
Orians K.J. and Boyle E.A., 1993. Determination of picomolar concentrations of titanium, gallium and indium in sea water by inductively coupled plasma mass spectrometry following an 8-hydroxyquinoline chelating resin preconcentration. Anal. Chim. Acta, 282, 63-74. https://doi.org/10.1016/0003-2....
 
16.
Petovar B., Xhanari K., and Finsgar M., 2018. A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis, Anal. Chim. Acta, 1004, 10-21. https://doi.org/10.1016/j.aca.....
 
17.
Prat M.D., Compano R., Granados M., and Miralles E., 1996. Liquid chromatographic determination of gallium and indium with fluorimetric detection. J. Chromat., A, 746, 239-245. https://doi.org/10.1016/0021-9....
 
18.
Saberyan K., Zolfonoun E., Shamsipur M., and Salavati-Niasari M., 2009. Separation and preconcentration of trace gallium and indium by Amberlite XAD-7 resin impregnated with a new hexadentates naphthol-derivative Schiff base. Sep. Scien. Technol., 44, 1851-1868. https://doi.org/10.1080/014963....
 
19.
Singh V.K., Agnihotri N.K., Singh H.B., Sharma R.L., 2001. Simultaneous determination of gallium(III) and indium(III) by derivative spectrophotometry. Talanta, 55, 799-806. https://doi.org/10.1016/s0039-....
 
20.
Urbanova V., Bartoŝ M., Vytras K., and Kuhn A., 2010. Porous bismuth film electrodes for signal increase in anodic stripping voltammetry. Electroanalysis, 22, 1524-1530. https://doi.org/10.1002/elan.2....
 
21.
Wang J., Lu J., Hocevar S.B., and Farias P.A.M., 2000. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem., 72, 3218-3222. https://doi.org/10.1021/ac0001....
 
22.
Wang J., Lu J., Kirgoz U.A., Hocevar S.B., and Ogorevc B., 2001. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Anal. Chim. Acta, 434, 29-34. https://doi.org/10.1016/s0003-....
 
23.
Wasąg J. and Grabarczyk M., 2016. Adsorptive stripping voltammetry of In(III) in the presence of cupferron using an in situ plated bismuth film electrode. Anal. Method., 8, 3605-3612. https://doi.org/10.1039/c6ay00....
 
24.
Węgiel K., Grabarczyk M., Kubiak W.W., and Baś B., 2017.A reliable and sensitive voltammetric determination of Mo(VI) at the in situ renovated bismuth bulk annular band electrode. J. Electrochem. Soc., 164, H352-H357. https://doi.org/10.1149/2.1161....
 
25.
Zaki M.T.M. and El-Didamony A.M., 1988. Determination of gallium and indium with haematoxylin in a micellar medium. Analyst, 113, 1277-1281. https://doi.org/10.1039/an9881....
 
26.
Zatopa A., Walker S., and Menguc Y., 2018. Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots. Soft Robotics, https://doi.org/10.1089/soro.2....
 
27.
Zhao Z., Yang Y., Xiao Y., and Fan Y., 2012. Recovery of gallium from Bayer liquor: A review. Hydrometallurgy, 125-126, 115-124. https://doi.org/10.1016/j.hydr....
 
28.
Zidaric T., Jovanovski V., and Hocevar S.B., 2018. Nano-structured bismuth film electrode for detection of progesterone, 18, 4233, doi:10.3390/s18124233, 1-7. https://doi.org/10.3390/s18124....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top