RESEARCH PAPER
Spectral composition of the applied radiation as a factor affecting the development, habit and yield of spring barley
 
More details
Hide details
1
Department of Agrometeorology and Applied Informatics, Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
 
2
Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
 
3
Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation – State Research Institute, Krańcowa 8, 24-100 Puławy, Poland
 
 
Final revision date: 2023-06-02
 
 
Acceptance date: 2023-06-06
 
 
Publication date: 2023-09-14
 
 
Corresponding author
Anna Podleśna   

Plant Nutrition and Fertilization, IUNG-PIB Puławy, Czartoryskich 8, 24-100, Puławy, Poland
 
 
Int. Agrophys. 2023, 37(3): 293-310
 
HIGHLIGHTS
  • The habit of barley was dependent on spectral composition of radiation in the growth chambers.
  • Plants growing in the chambers with the lowest R/FR ratio produced the longest shoots
  • Together with decreasing R/FR ratio the length of internodes was increasing.
  • The most grains were produced by plants growing in low R/FR ratio, and the least – in conditions with the highest R/FR ratio.
KEYWORDS
TOPICS
ABSTRACT
The aim of the conducted experiments was to determine the impact of the differentiated composition of spectral radiation on the development of spring barley. The experiment was conducted in laboratory conditions using artificial sources of radiation. The habit of the barley was dependent on the spectral composition of the radiation in the growth chambers in which the red to far-red values were in the range of 0.92-10.0. Barley grown with an increased share of far red light produced decidedly longer internodes and taller shoots than the plants radiated with a smaller amount. The leaves of the barley grown in a high red to far-red ratio were positioned less vertically and the plants formed a more dense canopy than in the chambers with a lower red to far-red ratio. The plants grown in the chamber with a low red to far-red ratio produced a greater mass of stems with ears and a lower mass of infertile stems in comparison with the plants grown in radiation with a lower share of far-red. In summary, in these condition it was found that an increase in the number and mass of grains, in the grain weight to stem weight ratio, in the total mass of straw and plants as well as in an increase in the 1 000 grain weight. A low red to far-red ratio is an indicator of the existence of competition but observed differences in barley development and yield showed that in these conditions the plants demonstrated adaptive responses to shading.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES (83)
1.
Antonious G.F. and Kasperbauer M.J., 2002. Color of light reflected to leaves modifies nutrient content of carrot roots. Crop Sci., 42, 1211-1216, https://doi.org/10.2135/cropsc....
 
2.
Bahmani I., Hazard L., Varlet-Grancher C., Betin M., Lemaire G., Matthew C., and Thom E.R., 2000. Differences in tillering of long- and short-leaved perennial ryegrass genetic lines under full light and shade treatments. Crop Sci., 40, 1095-1102, https://doi.org/10.2135/cropsc....
 
3.
Ballaré C.L., 1999. Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci., 4, 97-102, https://doi.org/10.1016/S1360-....
 
4.
Ballaré C.L., Sánchez R.A., Scopel A.L., Casal J.J., and Ghersa C.M., 1987. Early detection of neighbor plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ., 10, 551-557, https://doi.org/10.1111/1365-3....
 
5.
Ballaré C.L., Sánchez R.A., Scopel A.L., and Ghersa C.M., 1988. Morphological responses of Datura ferox L. seedlings to the presence of neighbours. Their relationship with canopy microclimate. Oecologia, 76, 288-293, https://doi.org/10.1007/BF0037....
 
6.
Ballaré C.L., Scopel A.L., and Sánchez R.A., 1997. Foraging for light: photosensory ecology and agricultural implications. Plant Cell Environ., 20, 820-825, https://doi.org/10.1046/j.1365....
 
7.
Briggs W.R. and Olney M.A., 2001. Photoreceptors in plant photomorphogenesis to date: Five phyto­chromes, two cryp­to­­­-chromes, one phototropin, and one superchrome. Plant. Physiol., 125, 85-88, https://doi.org/10.1104/pp.125...
 
8.
Brown C.S., Schuerger A.C., and Sager J.C., 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci., 120 (5), 808-813, https://doi.org/10.21273/JASHS....
 
9.
Casal J.J., 1988. Light quality effects on the appearance of tillers of different order in wheat (Triticum aestivum). Ann. Appl. Biol., 112, 167-173, https://doi.org/10.1111/j.1744....
 
10.
Casal J.J., 2000. Photochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem. Photobiol., 71(1), 1-11, https://doi.org/10.1562/0031-8....
 
11.
Casal J.J., Deregibus V.A., and Sánchez R.A., 1985. Variations in tiller dynamics and morphology in Lolium multiflorum Lam. Vegetative and reproductive plants as affected by differences in red/far red irradiation. Ann. Bot., 56, 553-559, https://doi.org/10.1093/oxford....
 
12.
Casal J.J., Sánchez R.A., and Deregibus V.A., 1986. The effect of plant density on tillering: the involvement of red-far red ratio and the proportion of radiation intercepted per plant. Environ. Exp. Bot., 26(4), 365-371, https://doi.org/10.1016/0098-8....
 
13.
Casal J.J., Sánchez R.A., and Deregibus V.A., 1987a. The effect of light quality on shoot extension growth in three species of grasses. Ann. Bot., 59, 1-7, https://doi.org/10.1093/oxford....
 
14.
Casal J.J., Sánchez R.A., and Deregibus V.A., 1987b. Tillering responses of Lolium multiforum plants to changes of red/far-red ratio typical of sparse canopies. J. Exp. Bot., 38, 1432-1439, https://doi.org/10.1093/jxb/38....
 
15.
Casal J.J., Sánchez R.A., and Gibson D., 1990. The significance of changes in the red/far red ratio associated either to neighbour plants or to twilight for tillering in Lolium multiflorum Lam. New Phytol., 116, 565-572, https://doi.org/10.1111/j.1469....
 
16.
Casal J.J. and Smith H., 1989. The function, action and adaptive significance of phytochrome in light-grown plants. Plant Cell Environ., 12, 855-862, https://doi.org/10.1111/j.1365....
 
17.
Cerdán P.D. and Chory J., 2003. Regulation of flowering time by light quality. Nature, 423, 881-885, https://doi.org/10.1038/nature....
 
18.
Childs K.L., Miller F.R., Cordonnier-Pratt M.M., Pratt L.H., Morgan P.W., and Mullet J.E., 1997. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol., 113, 611-619, https://doi.org/10.1104/pp.113....
 
19.
Davis M.H. and Simmons S.R., 1994a. Far red light from neighboring vegetation promotes shoot elongation and accelerates flowering in spring barley plants. Plant Cell Environ., 17, 829-836, https://doi.org/10.1111/j.1365....
 
20.
Davis M.H. and Simmons S.R., 1994b. Tillering response of barley to shifts in light quality caused by neighboring plants. Crop Sci., 34, 1604-1610, https://doi.org/10.2135/cropsc....
 
21.
Devlin P.F., Christie J.M., and Terry M.J., 2007. Many hands make light work. J. Exp. Bot., 58 (12), 3071-3077, https://doi.org/10.1093/jxb/er....
 
22.
Doroszewski A., 1997. Control of buckwheat by radiation reflected from the neighbouring plants (in Polish). Zesz. Nauk. AR Wrocław, 313, Konf. XV, 59-68.
 
23.
Doroszewski A., 2003. Development, habit and yield of buckwheat as affected by spectral composition of reflected radiation from the surface of soil (in Polish). Pam. Puł., 133, 43-57.
 
24.
Doroszewski A., 2011. Spectral composition of radiation as the control factor for habit and yield of wheat (in Polish). Monografie i Rozprawy Naukowe, IUNG-PIB, Puławy, 28, 1-141.
 
25.
Doroszewski A., Doroszewska T., and Podleśna A., 2020. Far red and red as factors forming physiological processes in spring barley under controlled conditions. Agronomy, 10, 2007, 1-17, https://doi.org/10.3390/agrono....
 
26.
Doust A.N., Devos K.M., Gadberry M.D., Gale M.D., and Kellogg E.A., 2004. Genetic control of branching in foxtail millet. Proc. Nat. Acad. Sci., 101, 9045-9050, https://doi.org/10.1073/pnas.0....
 
27.
El-Keblawy A., Soliman S., Al-Khoury R., Ghauri A., Al Rammah H., Hussain S.E., Rashid S., and Manzoor A. 2019. Effect of maturation conditions on light and temperature requirements during seed germination of Citrullus colocynthis from the Arabian Desert. Plant Biology, 21(2), 292-299, https://doi.org/10.1111/plb.12....
 
28.
Fankhauser C., 2001. The phytochromes, a family of red/far red absorbing photoreceptors. J. Biol. Chem., 276, 11453-11456, https://doi.org/10.1074/jbc.R1....
 
29.
Fellner M., Horton L.A., Cocke A.E., Stephens N.R., Ford E.D., and Van Volkenburgh E., 2003. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings. Planta, 216, 366-376, https://doi.org/10.1007/s00425....
 
30.
Franklin K.A., 2008. Shade avoidance. New Phytol., 179, 930-944, https://doi.org/10.3390/agrono....
 
31.
Franklin K.A., and Whitelam G.C., 2005. Phytochromes and shade-avoidance responses in plants. Ann. Bot., 96, 169-175, https://doi.org/10.1093/aob/mc....
 
32.
Frąszczak B., and Kula-Maximenko M., 2021. The preferences of different cultivars of lettuce seedlings (Lactuca sativa L.) For the spectral composition of light. Agronomy, 11(6), 1211, https://doi.org/10.3390/agrono....
 
33.
Halliday K.J., Koornneef M., and Whitelam G.C., 1994. Photochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiol., 104, 1311-1315, https://doi.org/10.1104/pp.104....
 
34.
Hanumappa M., Pratt L.H., Cordonnier-Pratt M.M., and Deitzer G.F., 1999. A photoperiod-insensitive barley line contains a light-labile phytochrome B. Plant Physiol., 119, 1033-1039, https://doi.org/10.1104/pp.119....
 
35.
Haun J.R., 1973 Visual quantification of wheat development. Agron. J., 65, 116-119, https://doi.org/10.2134/agronj....
 
36.
Holmes M.G. and Smith H., 1977a. The function of phytochrome in the natural environment. I. Characterisation of daylight for studies in photomorphogenesis and photoperiodism. Photochem. Photobiol., 25, 533-538, https://doi.org/10.1111/j.1751....
 
37.
Holmes M.G. and Smith H., 1977b. The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochem. Photobiol., 25, 539-545, https://doi.org/10.1111/j.1751....
 
38.
Izawa T., Oikawa T., Tokutomi S., Okuno K., and Shimamoto K., 2000. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J., 22, 391-399, https://doi.org/10.1046/j.1365....
 
39.
Kasperbauer M.J., 2000a. Cotton fiber length is affected by far-red light impinging on developing bolls. Crop Sci., 40(6), 1673-1678, https://doi.org/10.2135/cropsc....
 
40.
Kasperbauer M.J., 2000b. Strawberry yield over red versus black plastic mulch. Crop Sci., 40, 171-174, https://doi.org/10.2135/cropsc....
 
41.
Kasperbauer M.J., 2001. Light reflected from red mulch to ripening strawberries affects aroma, sugar and organic acid concentrations. Photochem. Photobiol., 74(1), 103-107, https://doi.org/10.1562/0031-8....
 
42.
Kasperbauer M.J. and Karlen D.L., 1994. Plant spacing and reflected far-red light effects on phytochrome-regulated photosynthate allocation in corn seedlings. Crop Sci., 34, 1564-1569, https://doi.org/10.2135/cropsc....
 
43.
Kebrom T.H. and Brutnell T.P., 2007. The molecular analysis of the shade avoidance syndrome in the grasses has begun. J. Exp. Bot., 58(12), 3079-3089, https://doi.org/10.1093/jxb/er....
 
44.
Kurepin L.V., Emery R.J.N., Pharis R.P., and Reid D.M., 2007. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J. Exp. Bot., 58(8), 2145-2157, https://doi.org/10.1093/jxb/er....
 
45.
Lafarge T.A., Broad I.J., and Hammer G.L., 2002. Tillering in grain sorghum over a wide range of population densities: identification of common hierarchy for tiller emergence, leaf area development and fertility. Ann. Bot., 90, 87-98, https://doi.org/10.1093/aob/mc....
 
46.
Lei K., Tan Q., Zhu L., Yang S., Hu J., Hou P., Shao Y., Jiang D., Cao W., Dai T., and Tian Z., 2022. Low red/far-red ratio can induce cytokinin degradation resulting in the inhibition of tillering in wheat (Triticum aestivum L.) Front. Plant Sci., 13, 971-1003, https://doi.org/10.3389/fpls.2....
 
47.
Libenson S., Rodriguez V., López Pereira M., Sánchez R.A., and Casal J.J., 2002. Low red to far-red ratio reaching the stem reduce grain yield in sunflower. Crop Sci., 42, 1180-1185, https://doi.org/10.2135/cropsc....
 
48.
Lin C., 2000.Photoreceptors and regulation of flowering time. Plant Physiol., 123, 39-50, https://doi.org/10.1104/pp.123....
 
49.
Loughrin J.H. and Kasperbauer M.J., 2001. Light reflected from colored mulches affects aroma and phenol content of sweet basil (Ocimum basilicum L.) leaves. J. Agric Food Chem., 49(3), 1331-1335, https://doi.org/10.1021/jf0012....
 
50.
Lötscher M. and Nösberger J., 1997. Branch and root formation in Trifolium repens is influenced by the light environment of unfolded leaves. Oecologia, 111, 499-504, https://doi.org/10.1007/s00442....
 
51.
Magagnini G., Grassi G., and Kotiranta S., 2018. The effect of light spectrum on the morphology and cannabinoid content of Cannabis sativa L. Med Cannabis Cannabinoids, 1, 19-27, https://doi.org/10.1159/000489....
 
52.
Marcuvitz S. and Turkington R., 2000. Differential effects of light quality provided by different grass neighbours, on the growth and morphology of Trifolium repens L. (white clover). Oecologia, 125, 293-300, https://doi.org/10.1007/s00442....
 
53.
McNellis T.W. and Deng X-W., 1995. Light control of seedling morphogenic pattern. Plant Cell., 7, 1749-1761, https://doi.org/10.1105/tpc.7.....
 
54.
Mondal M.F., Brewster J.L., Morris G.E.L., and Butler H.A. 1986. Bulb development in onion (Allium cepa L.) II. The influence of red:far red spectral ratio and of photon flux density. Ann. Bot., 58, 197-206, https://doi.org/10.1093/oxford....
 
55.
Neff M.M. and Chory J., 1998. Genetic interaction between phytochrome A, phytochrome B, cryptochrome 1 during Arabidopsis development. Plant Physiol., 118, 27-36, https://doi.org/10.1104/pp.118....
 
56.
Noworolnik K., 2003. The effect of sowing rate on buckwheat yield depending on nitrigen fertilization and sowing date (in Polish). Pam. Puł., 133, 147-155.
 
57.
Noworolnik K., 2008. Effect of soil condition on yielding of spring wheat and spring barley (in Polish). Acta Agroph., 11(2), 457-464.
 
58.
Noworolnik K., 2014. Agrotechnics in shaping of yield and quality of spring barley grain for fodder and food purposes (in Polish). Studia i Raporty IUNG-PIB, 41(15), 21-37.
 
59.
Pierik R., Djakovic-Petrovic T., Keuskamp D.H., de Wit M., and Voesenek L.A.C.J., 2009. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberelin and DELLA proteins in Arabidopsis. Plant J., 149, 1701-1712, https://doi.org/10.1104/pp.108....
 
60.
Pierik R., Whitelam G.C., Voesenek L.A.C.J., de Kroon H., and Visser E.J.W., 2004. Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signaling. Plant J., 38, 310-319, https://doi.org/10.1111/j.1365....
 
61.
Rajapakse N.C., McMahon M.J., and Kelly J.W., 1993. End of day far-red light reverses the height reduction of chrysanthemum induced by CuSO4 spectral filters. Scientia Hortic., 53, 249-259, https://doi.org/10.1016/0304-4....
 
62.
Rajcan I., AghaAlikhani M., Swanton C.J., and Tollenaar M., 2002. Development of redroot pigweed is influenced by light spectral quality and quantity. Crop Sci., 42, 1930-1936, https://doi.org/10.2135/cropsc....
 
63.
Robin C., Hay M.J.M., Newton P.C.D., and Greer D.H., 1994. Effects of light quality (red:far-red ratio) at the apical bud of the main stolon on morphogenesis of Trifolium repens L. Ann. Bot., 74, 119-123, https://doi.org/10.1006/anbo.1....
 
64.
Schmitt J., Dudley S.A., and Pigliucci M., 1999. Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade-avoidance responses in plants. American Naturalist., 154, 43-54, https://doi.org/10.1086/303282.
 
65.
Schmitt J. and Wulff R.D., 1993. Light spectral quality phytochrome and plant competition. Trends Ecol., 8, 47-50, https://doi.org/10.1016/0169-5....
 
66.
Simpson G.G. and Dean C., 2002. Arabidopsis, the rosette stone of flowering time? Science, 296, 286-289, https://doi.org/10.1126/scienc....
 
67.
Skinner R.H. and Simmons S.R., 1993. Modulation of leaf elongation, tiller appearance and tiller senescence in spring barley by far-red light. Plant Cell Environ., 16, 555-562, https://doi.org/10.1111/j.1365....
 
68.
Smith H., 1982. Light quality, photoperception and plant strategy. Ann. Review Plant Physiol., 33, 481-518, https://doi.org/10.1146/annure....
 
69.
Smith H., 1992. Ecology of photomorphogenesis: clues to a transgenic programme of crop plant improvement. Phototochem. Photobiol., 56, 815-822, https://doi.org/10.1111/j.1751....
 
70.
Smith H., 1995. Physiological and ecological function within the phytochrome family. Ann. Rev. Plant Mol. Biol., 46, 289-315, https://doi.org/10.1146/annure....
 
71.
Smith H., 2000. Phytochromes and light signal perception by plants: an emerging synthesis. Nature, 407, 585-591, https://doi.org/10.1038/350365....
 
72.
Smith H., Casal J.J., and Jackson G.M., 1990. Reflection signals and the perception by phytochrome of the proximity of neighboring vegetation. Plant Cell Environ., 13, 73-78, https://doi.org/10.1111/j.1365....
 
73.
Smith H. and Whitelam G.C., 1997. The shade avoidance syndrome: multiple responses mediated by multiple phyto-chromes. Plant Cell Environ., 20, 840-844, https://doi.org/10.1046/j.1365....
 
74.
Tan T., Li S., Fan Y., Wang Z., Ali Raza M., Shafiq I., Wang B., Wu X., Yong T., Wang X., Wu Y., Yang F., and Yang W., 2022. Far-red light: A regulator of plant morphology and photosynthetic. The Crop J., 10, 300-309, https://doi.org/10.1016/j.cj.2....
 
75.
Thomas B., 2006. Light signals and flowering. J. Exp. Bot., 57(13), 3387-3393, https://doi.org/10.1093/jxb/er....
 
76.
Vandenbussche F., Pierik R., Millenaar F.F., Voesenek L.A.C.J., and Van der Straeten D., 2005. Reaching out of the shade. Curr. Opin. Plant Biol., 8, 462-468, https://doi.org/10.1016/j.pbi.....
 
77.
Verbelen J.P., Pratt L.H., Butler W.L., and Tokuyasu K., 1982. Localization of phytochrome in oats by electron microscopy. Plant Physiol., 70, 4-8, https://doi.org/10.1104/pp.70.....
 
78.
Wherley B.G., Gardner D.S., and Metzger J.D., 2005. Tall fescue photomorphogenesis as influenced by changes in the spectral composition and light intensity. Crop Sci., 45, 562-568, https://doi.org/10.2135/cropsc....
 
79.
Whitelam G.C. and Smith H., 1991. Retention of phytochrome-mediated shade avoidance responses in phyto­­chrome-deficient mutants of Arabidopsis, cucumber and tomato. J. Plant Physiol., 139, 119-125, https://doi.org/10.1016/S0176-....
 
80.
Wu G., Wilson L.T., and McClung A.M., 1998. Contribution of rice tillers to dry matter accumulation and yield. Agron. J., 90, 317-323, https://doi.org/10.2134/agronj....
 
81.
Xie Q., Mayers S., and Sparkes D.L., 2016. Optimizing tiller production and survival for grain yield improvement in a bread wheat x spelt mapping population. Ann. Bot., 117, 51-66, https://doi.org/10.1093/aob/mc....
 
82.
Yang F., Liu Q., Cheng Y., Feng L., Wu X., Fan Y., Ali Raza M., Wang X., Yong T., Liu W., Liu J., Du J., Shu K., and Yang W., 2020. Low red/far red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. BMC Plant Biology, 20, 148, https://doi.org/10.1186/s12870....
 
83.
Yanovsky M.J., Alconada-Magliano T.M., Mazzella M.A., Gat C., Thomas B., and Casal J.J., 1998. Phytochrome A affects stem growth, anthocyanin synthesis, sucrose-phosphate-synthase activity and neighbor detection in sunlight-grown potato. Planta, 205, 235-241, https://doi.org/10.1007/s00425....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top