RESEARCH PAPER
Spring rye as a source of biomass and carbon in the soil
 
More details
Hide details
1
Departament of Economics and Agribusiness, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
 
2
Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
 
3
Department of Fodder Crop Cultivation, Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
 
 
Final revision date: 2024-03-26
 
 
Acceptance date: 2024-04-07
 
 
Publication date: 2024-05-27
 
 
Corresponding author
Hanna Klikocka   

Departament of Economics and Agribusiness, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
 
 
Int. Agrophys. 2024, 38(3): 243-255
 
HIGHLIGHTS
  • The grain and straw yield of spring rye as well as carbon content and accumulation were the most positively influenced by application of nitrogen and sulphur.
  • Carbon accumulation increased in the effect of nitrogen and sulphur fertilization.
  • Total accumulation of carbon by the dry matter of grain and straw increased up to the rate of 90 kg N ha−1 and addition of sulphur.
KEYWORDS
TOPICS
ABSTRACT
The aim of the experiment was to determine the mass yield and amount of total carbon accumulated by spring rye biomass in individual stages of growth determined according to the BBCH scale (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie): BBCH 30-31 – leaves, BBCH 55-59 – whole plants, BBCH 89-92 – grain and straw). The required results were obtained by conducting a field experiment (2009-2011) which tested the effect of the application of nitrogen (0, 30, 60, 90 kg ha−1) and sulphur (0, 40 kg ha−1) on biomass yield, carbon content and accumulation, and also the C:N ratio. N application in the amount of 60 and 90 kg ha−1 was shown to have the most beneficial effect on biomass yield at each stage of growth. Carbon was accumulated in the amount of 1 294 kg ha−1 by the leaves (BBCH stage 30-31), 2 365 kg ha−1 by the whole plants (BBCH 55-59), 1 334 kg ha−1 by the grain (BBCH 89-92), and 2 062 kg ha−1 by the straw (BBCH 89-92). The total accumulation of carbon by the dry matter of grain + straw increased up to the application rate of 90 kg N ha−1 following the addition of sulphur. The average total accumulation of C was 3 408 kg ha−1. The unit accumulation of carbon was reduced following the application of 30 kg N ha−1, but increased significantly with the level of nitrogen applied, averaging 892.7 C t−1. In general, it may be concluded that under conditions without manure application, ploughing the green matter and straw of spring rye is a good source of carbon in the soil, and is furthermore a technique aimed at limiting global warming by reducing greenhouse gases emissions.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
 
REFERENCES (53)
1.
Barczak, B., Nowak, K., 2010. Effect of the sulphur dose and form on yielding and protein content in Komes cultivar of oat grain. Fragm. Agron. 27(1), 14-20, https://pta.up.poznan.pl/pdf/2....
 
2.
Bardule, A., Lupikis, A., Butlers, A., Lazdins, A., 2017. Organic carbon stock in different types of mineral soils in cropland and grassland in Latvia. Zemdirbyste-Agriculture 104, 3-8. https://doi.org/10.13080/z-a.2....
 
3.
COBORU (Centralny Ośrodek Badania Odmian Roślin Uprawnych), 2022. Preliminary yield results in post-registration experiments. Spring cereals (in Polish). COBO 104/2022 n. 350, https//www.coboru.gov.pl.
 
4.
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., et al., 2017. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 37, 14. https://doi.org/10.1007/s13593....
 
5.
Ditzler, C., Scheffe, K., Monger, H.C., (Eds.). 2017. Soil survey manual. Soil Science Division Staff. USDA Handbook 18. Government Printing Office, Washington, D.C.
 
6.
Dopka, D., Korsak-Adamowicz, M., Starczewski, J., 2007. Influence of selected physical properties of soil on spring rye field. Fragm. Agron. 1(93), 33-40, https://pta.up.poznan.pl/pdf/F....
 
7.
Dopka, D., Korsak-Adamowicz, M., Starczewski, J., 2012. Biomass of stubble catch crops and their impact on spring rye yield in monoculture cultivation. Fragm. Agron. 29(2), 27-32, https://pta.up.poznan.pl/pdf/2....
 
8.
Dopka, D., Korsak-Adamowicz, M., Starczewski, J., Paluszkiewicz, J., 2013. Economic evaluation of monoculture cultivation of spring rye. Fragm. Agron. 30(1), 20-26, https://pta.up.poznan.pl/pdf/2....
 
9.
Eglin, T., Ciais, P., Piao, S.L., Barre, P., Bellassen, V., Cadule, P., et al., 2010. Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus B: Chemical Physical Meteorol. 62, 700. https://doi.org/10.1111/j.1600....
 
10.
Ercoli, L., Masoni, A., Mariotti, M., Arduini, I., 2009. Accumulation of dry matter and nitrogen in durum wheat during grain filling as affected by temperature and nitrogen rate. Ital. J. Agronomy 4, 3. https://doi.org/10.4081/ija.20....
 
11.
Fang, J., Yu, G., Liu, L., Hu, S., Chapin, F.S., 2018. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. U.S.A. 115, 4015-4020. https://doi.org/10.1073/pnas.1....
 
12.
FAO (Food and Agriculture Organization of the United Nation). 2004. Carbon sequestration in dry land soils: World soil resources reports 102. Rome 2004, http://www.fao.org/3/y5738e/y5....
 
13.
Galek, R., Grochowski, L., 1998. Diversification of yield and quality characteristics in spring rye collection. Biul. IHAR 205/206, 45-50.
 
14.
Ghaley, B.B., Sandhu, H.S., Porter, J.R., 2015. Relationship between C:N/C:O stoichiometry and ecosystem services in managed production systems. PLoS ONE 10, e0123869. https://doi.org/10.1371/journa....
 
15.
Gooding, M.J., Ellis, R.H., Shewry, P.R., Schofield, J.D., 2003. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J. Cereal Sci. 37, 295-309. https://doi.org/10.1006/jcrs.2....
 
16.
Grochowski, L., 1995. Preliminary assessment of collectible forms of spring rye. Biul. IHAR 195/196, 317-321.
 
17.
Grzebisz, W., 2009. Fertilization of cultivated plants. Part II. Fertilizers and fertilization systems. Ed. PWRiL, Poznań 376 pp.
 
18.
Grzebisz, W., Härdter, R., 2006. Kieserite – natural magnesium sulphate. Verlagsgesseischaft für Eckerbau GmbH, Kassel, Germany 125 pp.
 
19.
Heikkinen, J., Ketoja, E., Nuutinen, V., Regina, K., 2013. Declining trend of carbon in Finnish cropland soils in 1974-2009. Global Change Biology 19, 1456-1469. https://doi.org/10.1111/gcb.12....
 
20.
Jaśkiewicz, B., 2004. Growth and accumulation of Fidelio triticale mass under conditions of differentiated nitrogen fertilization and sowing density. Biul. IHAR, 231, 185-189.
 
21.
Jat, M.L., Chakraborty, D., Ladha, J.K., Parihar, C.M., Datta, A., Mandal, B., et al., 2022. Carbon sequestration potential, challenges, and strategies towards climate action in smallholder agricultural systems of South Asia. Crop Environ. 1, 86-101. https://doi.org/10.1016/j.crop....
 
22.
Kadłubiec, W., Bojarczuk, J., 2003. Evaluation of the interaction of spring triticale and spring rye families with the environment. Message. Biul. IHAR 230: 187-193.
 
23.
Kalembasa, S., Siczek, A., Kalembasa, D., Spychaj-Fabisiak, E.U., Becher, M., Gebus‑Czupyt, B., 2023. Fractions of nitrogen (including 15N) and also carbon in the soil as affected by different crop residues. Int. Agrophys. 37, 265-278. https://doi.org/10.31545/intag....
 
24.
Karcz, H., Kantorek, M., Grabowicz, M., Wierzbicka, K., 2013. The possibility of using straw as a fuel source in power boilers. Piece Przem. Kotły XI-XII, 8-15, https://www.infona.pl/resource....
 
25.
Klikocka, H., 2010. The importance of sulfur in the biosphere and plant fertilization. Przem. Chem. 89/7: 903-908.
 
26.
Klikocka, H., Cybulska, M., 2014. Sulphur and nitrogen fertilization of spring wheat. LAP LAMBERT Academic Publishing, Saarbrücken, Germany, 122 pp.
 
27.
Klikocka, H., Narolski, B., and Michałkiewicz, G., 2014. The effects of tillage and soil mineral fertilization on the yield and yield components of spring barley. Plant Soil Environ. 60 (6), 255-261. https://doi.org/10.17221/14/20....
 
28.
Klikocka, H., Podleśna, A., Podleśny, J., Narolski, B., Haneklaus, S., Bloem, E., Schnug, E., 2020. Improvement of the Content and Uptake of Micronutrients in Spring Rye Grain D.M. Through Nitrogen and Sulfur Supplementation. Agronomy 10(1), 35, 1-11. https://doi.org/10.3390/agrono....
 
29.
Klikocka, H., Skwaryło-Bednarz, B., Podleśna, A., Narolski, B., 2022. The response of spring rye (Secale cereale L.) to NPK and S fertilizers. The content and uptake of macroelements and the value of ionic ratios. J. Elem. 27(2), 249-263. https://doi.org/10.5601/jelem.....
 
30.
Kondracki, J., 1980. Physical Geography of Poland. PWRiL, Warszawa, 196-215.
 
31.
Król, M.J., Perzyński, A., Leśniak, A., 2007. The use of straw as a carbon source in the fixation of free nitrogen by bacteria of the genus Azospirillum. Pam. Puł. 146, 21-31.
 
32.
Kuś, J., Krasowicz, S., Kopiński, J., 2008. Assessment of sustainability opportunities, livestock farms. In: From the research on socially sustainable agriculture. Ed. Zegar, J.. Ed. IERGŻ Warszawa 87,11-38.
 
33.
Larsen, K.S., Andresen, L.C., Beier, C., Jonasson, S., Albert, K.R., Ambus, P., et al., 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing result of the CLIMAITE project after two years of treatments. Global Change Biol. 17, 1884-1899.https://www.researchgate.net/p....
 
34.
Li, Y., 2012. Association analysis of frost tolerance in rye (Secale cereale L.) using candidate gene polymorphisms data from controlled, semi-controlled, and field phenotyping platforms. Doctors Dissertation. Technical University of Munich. Department of Plant Breeding, Munich, Germany.
 
35.
Lu, Y., Duan, B., Zhang, X., Korpelainen, H., Berninger, F., Li, C., 2009. Intraspecific variation in drought response of Populus cathayana grown under ambient and enhanced UV-B radiation. Annal. Forest Sci. 66(6), 1-613. https://doi.org/10.1051/forest....
 
36.
Narolski, B., 2016. Yield efficiency of sulfur and nitrogen in spring rye production. Ph.D. Thesis. Typescript, IUNG-PIB Puławy, Poland.
 
37.
Nunes-Nesi, A., Fernie, A.R., Stitt, M., 2010. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant 3, 973-996. https://doi.org/10.1093/mp/ssq....
 
38.
Ort, S.B., Ketterings, Q.M., Swink, S.N., Godwin, G.S., Gami, S., Czymmek, K.J., 2013. Spring carbon and nitrogen pools of wheat and cereal rye following corn silage. What's Cropping Up? http://nmsp.cals.cornell.edu/A....
 
39.
Palta, J.A., Kobata, T., Turner, N.C., Fillery, I.R., 1994. Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficits. Crop Sci. 34, 118-124. https://doi.org/10.2135/cropsc....
 
40.
Pasricha, N.S., 2017. Conservation agriculture effects on dynamics of soil C and N under climate change scenario. In: Advances in Agronomy. Elsevier 269-312. https://doi.org/10.1016/bs.agr....
 
41.
Podleśna, A., Klikocka, H., Narolski, B., 2018. Efficiency of fertilization and use of nitrogen and sulfur by spring rye. Przem. Chem. 97(8), 308-1311.
 
42.
Povilaitis, V., Lazauskas, S., Antanaitis, Š., Sakalauskaitė, S., Pšibišauskienė, G., Auškalnienė, O., Raudonius, S., Duchovskis, P., 2011. Carbon accumulation in winter wheat under different growing intensity and climate change. Inter. Schol., Sci. Resch. Innov. 5(11), 1510-1513.
 
43.
Powlson, D.S., Whitmore, A.P., Goulding, K.W.T., 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European J. Soil Sci. 62, 42-55. https://doi.org/10.1111/j.1365....
 
44.
Raven, J.A., Handley L.L., Andrews M., 2004. Global aspects of C/N interactions determining plant-environment interactions. J. Exp. Botany 55, 11-25. https://doi.org/10.1093/jxb/er....
 
45.
Rymuza, K., Marciniuk-Kluska, A., Bombik, A., 2012. Yielding of winter cereals depending on thermal and precipitation conditions in the production fields of the Agricultural Experimental Station in Zawady. Woda-Środowisko-Obszary Wiejskie 12, 2(38), 207-220. http://www.itp.edu.pl/old/wyda....
 
46.
Sardans, J., Rivas-Ubach, A., Peñuelas, J., 2012. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives Plant Ecology, Evolution Systematics 14, 33-47. https://doi.org/10.1016/j.ppee....
 
47.
Simpson, R.J., Lambers, H., Dalling, M.J., 1983. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.): IV. Development of a Quantitative Model of the Translocation of Nitrogen to the Grain. Plant Physiol. 71, 7-14. https://doi.org/10.1104/pp.71.....
 
48.
Starck, Z., 2006. Diverse functions of carbon and nitrogen in plants. Kosmos. Prob. Nauk Biol. 55, 2-3(271-272): 243-257. http://kosmos.icm.edu.pl/PDF/2....
 
49.
Sulpice, R., Nikoloski, Z., Tschoep, H., Antonio, C., Kleessen, S., Larhlimi, A., et al., 2013. Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of arabidopsis accessions. Plant Physiol. 162, 347-363. https://doi.org/10.1104/pp.112....
 
50.
Tarkowski, C., 1983. Rye biology. PWN Warszawa 367 pp.
 
51.
Witzenberg, A.H., Hack, H., van den Boom, T., 1989. Erläuterungen zum BBCH Dezimal-Code für die Entwicklungsstadien des Getreides – mit Abbildungen. Gesunde Pflanzen. 41, 384-388, https://pascal-francis.inist.f....
 
52.
United Nations Framework Convention on Climate Change (UNFCCC), 2016. The Paris Agreement. https://unfccc.int/process-and....
 
53.
Ye, Y., Liang, X., Chen, Y., Li, L., Ji, Y., Zhu, C., 2014. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements. PLoS One 9, e101776. https://doi.org/10.1371/journa....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top