REVIEW PAPER
 
HIGHLIGHTS
  • This review discusses the waste ammonia sources with its impact to environment.
  • Discussed on the catalytic based thermochemical process for ammonia decomposition.
  • This decomposition approach helps in mitigation of ammonia via hydrogen production.
  • Discuss on metals catalysis performance on ammonia decomposition/ H2 synthesis.
KEYWORDS
TOPICS
ABSTRACT
Thermochemical processes have recently attracted more attentions from researchers, particularly the use of decomposition of ammonia-based compounds and water-gas shift and steam reforming processes. These processes may be applied for hydrogen generation (H2) from a syngas mixture and that is the main concern of this paper. Furthermore, these processes are currently facing the challenge of low hydrogen yields. Traditionally, H2 fuel is generated from fossil fuels by utilizing different reforming processes. The longevity and reliability of catalysts, their purity and the start-up time/costs are also some of the critical challenges to be faced. Sustainable H2 generation from sustainable sources like ammonia (NH3) gas was found to be an innovative process with the appropriate selection of the catalytic process and also thermochemical processes being shown to be critical issues. Traditional approaches to H2 synthesis such as the ammonia cracking process and the generation of hydrogen occur at high temperatures of 500oC or more. Current efforts in the field of H2 generation rely on a process which includes the decomposition of ammonia gas, this achieves a high yield through the application of alkali metal amide/imides as effective catalysts. NH3 and methane (CH4) decomposition is exploited for H2 production through the application of a steam methane reforming process in bench scale packed-bed reactors. This requires an NH3 feed solution at a temperature of 150oC that can generate more H2 (up to 90%) in the total syngas yield. Efforts were made to change/shift the equilibrium towards increased hydrogen production. Researchers have engaged in many efforts to remove H2 from a membrane or in carbon dioxide extraction with the use of a solid sorbent. A continuous mode of enhanced H2 production can be achieved by integrating the reforming process with concentrated solar radiation for thermal storage. Efforts were made to remove H2 from a membrane or extract carbon dioxide using a solid sorbent. This review explores the decomposition techniques, catalytic systems and thermochemical conditions required for H2 generation from NH3/NH3-rich products/wastes.
CONFLICT OF INTEREST
The authors declare that they have no Conflict of Interest.
REFERENCES (115)
1.
Ajiwibowo, M.W., Darmawan, A., Aziz, M., 2019. A conceptual chemical looping combustion power system design in a power-to-gas energy storage scenario. Int. J. Hydrog. Energy 44, 9636–9642. https://doi.org/10.1016/j.ijhy....
 
2.
Arabczyk, W., Zamłynny, J., Moszyński, D., Kałucki, K., 2005. Ammonia decomposition over iron in the presence of water vapor. Polish J. Chemist. 79(9), 1495-1501. bwmeta1.element.baztech-article-BUJ3-0002-0162.
 
3.
Arnaiz del Pozo, C., Cloete, S., 2022. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Convers Manag. 255, 10.1016/j.enconman.2022.115312.
 
4.
Arora, P., Hoadley, A.F.A., Mahajani, S.M., Ganesh, A., 2016. Small-scale ammonia production from biomass: a techno-enviro-economic perspective. Ind. Eng. Chem. Res. 55, 6422-6434.
 
5.
Aziz, M., Wijayanta, A.T., Nandiyanto, A.B.D., 2020. Ammonia as effective hydrogen storage: a review on production, storage and utilization. Energ. 13, 3062. https://doi.org /10.3390/en13123062.
 
6.
Backes, A.M., Aulinger, A., Bieser, J., Matthias, V., Quante, M., 2016. Ammonia emissions in Europe, part II: how ammonia emission abatement strategies affect secondary aerosols. Atmos. Environ. 126, 153-161. https://doi.org/10.1016/j. atmosenv.2015.11.039.
 
7.
Bauer, S.E., Tsigaridis, K., Miller, R., 2016. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett. 43, 5394-5400. https://doi.org/10.1002/2016GL....
 
8.
Behera, S.N., Sharma, M., Aneja, V.P., Balasubramanian, R., 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. Int. 20(11), 8092-131. https://doi.org/10.1007/s11356....
 
9.
Bekiaris, E., Tsami, M., Panou, M., 2017. A “Greening Mobility” framework towards sustainability. Transp. Res. Procedia. 24, 131-136, https://doi.org/10.1016/j.trpr....
 
10.
Bell, T.E., Torrente-Murciano, L., 2016. H2 Production via ammonia decomposition using non-noble metal catalysts: A Review. Top. Catal., 59, 1438-1457.
 
11.
Bhalla, A., Mahi, S., Sharma, N., Singh, S., 2011. Glycopyrrolate in toxic exposure to ammonia gas. J. Emerg Trauma Shoc. 4(1), 140-141. https://doi.org/10.4103/0974-2....
 
12.
Bhattacharya, S., Hanpude, P., Maiti, T.K., 2015. Cancer associated missense mutations in BAP1 catalytic domain induce amyloidogenic aggregation: A new insight in enzymatic inactivation. Sci Rep. 5, 18462. https://doi.org/10.1038/srep18....
 
13.
Bourdin, F., Sakrabani, R., Kibblewhite, M.G., Lanigan, G.J., 2014. Effect of slurry dry matter content, application technique and timing on emissions of ammonia and greenhouse gas from cattle slurry applied to grassland soils in Ireland. Agric. Ecosyst. Environ. 188, 122-133. https://doi.org/10.1016/j.agee..., 2014.
 
14.
Bykov, V., Stein, M., Maas, U., 2023. Study of mechanism of ammonia decomposition and oxidation: From NOx reduction to ammonia auto-ignition problem. Proceed Combust Instit. 39(4), 4267-4275.. https://doi.org/10.1016/j.proc....
 
15.
Cechetto, V., Di, Felice, L., Medrano, J.A., Makhloufi, C., Zuniga, J., Gallucci, F., 2021. H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Process. Technol. 216, 106772. https://doi.org/10.1016/j.fupr....
 
16.
Chen, J., Zhu, Z.H., Wang, S., Ma, Q., Rudolph, V., Lu G.Q., 2010. Effects of nitrogen doping on the structure of carbon nanotubes (CNTs) and activity of Ru/CNTs in ammonia decomposition. Chem Eng J. 156, 404-10. https://doi.org/10.1016/j.cej.....
 
17.
Chen, Y., Zhang, G., Ji, Q., Lan, H., Liu, H., Qu, J., 2022. Visualization of electrochemically accessible sites in flow-through mode for maximizing available active area toward superior electrocatalytic ammonia oxidation. Environ Sci. Technol. 56(13), 9722-9731. https://doi.org/10.1021/acs.es....
 
18.
Chen, Z.L., Song, W., Hu, C.C., Liu, X.J., Chen, G.Y., Walters, W.W., et al., 2022. Significant contributions of combustion-related sources to ammonia emissions. Nat Commun. 13(1), 7710. https://doi.org/10.1038/s41467....
 
19.
Choi, K.Y., Wernick, D.G., Tat, C.A, Liao, J.C., 2014. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng. 23, 53-61. https://doi.org/10.1016/j.ymbe....
 
20.
Choudhary, T.V., Sivadinarayana, C., Goodman, D.W., 2001. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 72(3-4), 197-201. https://doi.org/10.1023/A:1009....
 
21.
Czekajło, Ł., Lendzion-Bieluń, Z., 2016. Effect of preparation conditions and promoters on the structure and activity of the ammonia decomposition reaction catalyst based on nanocrystalline cobalt. Chem Eng J. 289, 254-260. https://doi.org/10.1016/j.cej.....
 
22.
Duan, X., Qian, G., Zhou, X., Sui, Z., Chen, D., Yuan, W., 2011.Tuning the size and shape of fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Appl. Catal. B 101(3-4), 189-196.
 
23.
Effah, Z., Li, L., Xie, J., Karikari, B., Xu, A., Wang, L., et al., 2023. Widely untargeted metabolomic profiling unearths metabolites and pathways involved in leaf senescence and N remobilization in spring-cultivated wheat under different N regimes. Front Plant Sci. 14, 1166933. https://doi.org/10.3389/fpls.2....
 
24.
Errico, M., Fjerbaek, L.S., Nielsen, A.K., Norddahl, B., 2018. Treatment costs of ammonia recovery from biogas digestate by air stripping analyzed by process simulation. Clean Techn. Environ. Polic. 20, 1479-1489. https://doi.org/10.1007/s10098....
 
25.
Eschenlauer, S.C., McKain, N., Walker, N.D., McEwan, N.R., Newbold, C.J., Wallace, R.J., 2002. Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen. Appl. Environ. Microbiol. 68, 4925-4931. 10.1128/AEM.68.10.4925-4931.2002.
 
26.
Farooq, M.S., Wang, X., Uzair, M., Fatima, H., Fiaz, S., Maqbool, Z., et al., 2022. Recent trends in nitrogen cycle and eco-efficient nitrogen management strategies in aerobic rice system. Front Plant Sci. 13, 960641. https://doi.org/10.3389/fpls.2....
 
27.
Fasihi, M., Weiss, R., Savolainen, J., Breyer, C., 2021. Global potential of green ammonia based on hybrid PV-wind power plants. Appl. Ener. 294 , 116170.
 
28.
Gallucci, F., Medrano, J., Fernandez, E., Melendez, J., van Sint Annaland, M., Pacheco, A., 2017. Advances on high temperature pd-based membranes and membrane reactors for hydrogen purifcation and production. J. Membr. Sci. Res. 3 (3), 142-156, 10.22079/jmsr.20 17.23644.
 
29.
García-García, F.R., Gallegos-Suarez, E., Guerrero-Ruiz, M., Fernández-García, A., Rodríguez-Ramos, I., 2017. Understanding the role of oxygen surface groups: The key for a smart ruthenium-based carbon-supported heterogeneous catalyst design and synthesis. Appl. Catal. 544, 66-76.
 
30.
Gong, L., Lewicki, R., Griffin, R.J., Tittel, F.K., Lonsdale, C.R., Stevens, R.G., et al., 2013. Role of atmospheric ammonia in particulate matter formation in Houston during summertime. Atmos. Environ. 77, 893-900. https://doi.org/10.1016/J.ATMO....
 
31.
Grant, R.H., Boehm, M.T., 2020. Ammonia emissions from differing manure storage facilities at two midwestern free-stall dairies. Atmosph. 11(10), 1108. https://doi.org/10.3390/atmos1....
 
32.
Grishin, D.V., Kasap, E.Y., Izotov, A.A., Lisitsa, A.V., 2020. Multifaceted ammonia transporters. All Life., 13(1), 486-497. https://doi.org/10.1080/268952....
 
33.
Gu, B., Zhang, L., Dingenen, R., , Van Vieno, M., Grinsven, H. J. Van Zhang, X., et al., 2021. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Sci. 374 (6568), 758-762. https://doi.org/10.1126/SCIENC.... ABF8623/ SUP PL_ FILE/SCIENCE. ABF8623_SM. PDF.
 
34.
H¨ani, C., Sintermann, J., Kupper, T., Jocher, M., Neftel, A., 2016. Ammonia emission after slurry application to grassland in Switzerland. Atmos. Environ. 125, 92-99. https://doi.org/10.1016/j.atmo....
 
35.
Han, B., Butterly, C., Zhang, W., He, J.-Z., Chen, D., 2021. Adsorbent materials for ammonium and ammonia removal: A review. J Cleaner Prod. 283, 124611. https://doi.org/10.1016/j.jcle....
 
36.
Han, X., Hu, M., Yu, J., Xu, X., Jing, P., Liu, B., et al., 2023. Dual confinement of LaCoOx modified Co nanoparticles for superior and stable ammonia decomposition. Appl.Catalys B: Environ. 328, 122534. https://doi.org/10.1016/j.apca....
 
37.
Han, X., Wang, Z., He, Y., Liu, Y., Zhu, Y., Konnov, A., 2020. The temperature dependence of the laminar burning velocity and superadiabatic flame temperature phenomenon for NH3/air flames. Combust. Flame. 217, 314-320.
 
38.
Hanada, N., Hino, S., Ichikawa, T., Suzuki H., Takai K., Kojima Y., 2010. Hydrogen generation by electrolysis of liquid ammonia Chem. Commun. 46, 7775-7777. https://doi.org/10.1039/C0CC01....
 
39.
Hao, D., Liu, Y., Gao, S., Arandiyan, H., Bai, X., Kong, Q., et al., 2021. Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. Mater.Tod. 46, 212-233. https://doi.org/10.1016/j.matt... .01.029.
 
40.
He, H., Chen, C., Bian, C., Ren, J., Liu, J., Huang, W., 2023. Enhanced ammonia decomposition by tuning the support properties of Ni/GdxCe1-xO2-δ at 600°C. Molecul. 28, 2750. https://doi.org/10.3390/molecu....
 
41.
Hirabayashi, S., Ichihashi, M., 2016. Adsorption and dehydrogenation of ammonia on vanadium and niobium nitride cluster cations. Internat. J. Mass Spectrom. 407, 86-91. https://doi.org/10.1016/j.ijms....
 
42.
Hong, Q., Shen, T., Wang, P., Shen, L., Cheng, L., Song, T., 2021. Evaluation of different red muds as oxygen carriers in a fluidized bed thermogravimetric analyzer. Energy Fuel. 35(18), 14805-14815. https://doi.org/10.1021/acs.en....
 
43.
Hosseini, S.E., Butler, B., 2020. An overview of development and challenges in hydrogen powered vehicles. Int. J. Green Energy 17, 13-37, 10.1080/15435075.2019.1685999.
 
44.
Hosseini, S.E., Wahid, M.A., 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sustain Energy Rev. 57, 850-866. https://doi.org/10.1016/j.rser....
 
45.
Hu, Z., Mahin, J., Datta, S., Bell, T.E., Torrente-Murciano, L., 2019. Ru-based catalysts for H2 production from ammonia: effect of 1D support Top. Catal. 62(17), 1169-1177, https://doi.org/10.1007/s11244....
 
46.
Ikäheimo, J., Kiviluoma, J., Weiss, R., Holttinen, H., 2018. Power-to-ammonia in future North European 100% renewable power and heat system. Int. J. Hydrogen Energy 43, 17295-17308.
 
47.
Inokawa, H., Ichikawa, T., Miyaoka, H., 2015. Catalysis of nickel nanoparticles with high thermal stability for ammonia decomposition. Appl. Catal. 491, 184-188.
 
48.
Jeong, S.Y., Jang, D., Lee, M.C., 2022. Property-based quantitative risk assessment of hydrogen, ammonia, methane, and propane considering explosion, combustion, toxicity, and environmental impacts. J. Ener. Storag. 54, 105344. https://doi.org/10.10 16/j.est.2022.105344.
 
49.
Ji, J., Duan, X., Qian, G., Zhou, X., Tong, G., Yuan, W., 2014. Towards an efficient CoMo/γ-Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. Int. J. Hydrog. Energy 39(24), 12490-12498.
 
50.
Kim, H.B., Park, E.D., 2023. Ammonia decomposition over Ru catalysts supported on alumina with different crystalline phases. Cataly Tod. 411-412, 113817.
 
51.
Kim, H.J., 2021. Metabolic Acidosis in chronic kidney disease: pathogenesis, clinical consequences, and treatment. Electrolyte Blood Press 19(2), 29-37. https://doi.org/10.5049/EBP .2021.19.2.29.
 
52.
Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A., Adormaa, B., 2018. Greenhouse effect: greenhouse gases and their impact on global warming. J. Sci. Res. Rep., 17, 1-9, https://doi.org/10.9734/JSRR/2....
 
53.
Lan, R., Irvine, J.T.S., Tao, S.W., 2012. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Ener. 37, 1482–1494. https://doi.org /10.1016/j .ijhydene. 2011.10.004.
 
54.
Le, T.A., Kim, Y., Kim, H.W., Lee, S.-U., Kim, J.-R., Kim, T.-W., Lee, Y.-J., Chae, H.-J., 2021. Ru-supported lanthania-ceria composite as an efficient catalyst for COx-free H2 production from ammonia decomposition. Appl. Catal. B Environ. 285, 119831, 10.1016/j.apcatb.2020.119831.
 
55.
Lee, H.J., Park, E.D., 2022. Ammonia decomposition over Ru/SiO2 catalysts. Catalysts 12, 1203. https://doi.org/10.3390/catal1....
 
56.
Lee, H.J., Park, E.D., 2022. Ammonia Decomposition over Ru/SiO2 catalysts. Catalysts 12, 1203. https://doi.org/10.3390/catal1....
 
57.
Lee, J.Y., Lim, Y.H., Park, B.H., Adelodun, A.A., Jo, Y.M., 2015. Preparation of Ag-Cu/Al2O3 composite catalyst for ammonia decomposition. Bull. Korean Chem. Soc. 36(1), 162-167. https://doi.org/10.1002/bkcs.1....
 
58.
Lendzion-Bieluń, Z., Arabczyk, W., 2013. Fused Fe single bond Co catalysts for hydrogen production by means of the ammonia decomposition reaction. Catalys. Tod. 212, 215-219.
 
59.
Leung, K.-C., Tan, E., Li, G., Ng, B.K.Y., Lebedev, B.H, K., Tsang, E., 2023. Metal-loaded zeolites in ammonia decomposition catalysis. Faraday Discuss. 243, 520-548. https://doi.org/10.1039/D2FD00....
 
60.
Li, G., Lu, X., Kim, J.Y., Meinhardt, K.D., Chang, H.J., Canfield, N.L., Sprenkle, V.L., 2016. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density. Nat. Commun. 7, 10683, https://doi.org/10.1038/ncomms....
 
61.
Li, K., Wang, H., Li, J., Dong, F., 2022. Design and mechanism of photocatalytic oxidation for the removal of air pollutants: a review. Environ Chemistry Lett. 20(4), 2687-2708. https://doi.org/10.1007/s10311....
 
62.
Li, X.-K., Ji, J., Zhao, B., Wang, S.-J., Au, C.-T., 2005. Ammonia decomposition over Ru and Ni Catalysts Supported on Fumed SiO2, MCM-41, and SBA-15. J. Catal. 236(2), 181-189. https://doi.org/10.1016/j.jcat....
 
63.
Liu, W., Qi, Y., Zhang, R., Zhang, Q., Wang, Z., 2022. Hydrogen production from ammonia-rich combustion for fuel reforming under high temperature and high pressure conditions. Fuel. 327, 124830. https://doi.org/10.1016/j.fuel....
 
64.
Liu, X., Wang, J., 2023. Selective oxidation of ammonia to dinitrogen gas by facile Co2+/PMS/chloridion process through reactive chlorine radicals. Chemosph., 313, 137648. https://doi.org/10.1016/j.chem....
 
65.
Liu, X., Wu, D., Abid, A.A., Liu, Y., Zhou, J., Zhang, Q., 2022. Determination of paddy soil ammonia nitrogen using rapid detection kit coupled with microplate reader. Toxics. 10(12), 725. https://doi.org/10.3390/toxics....
 
66.
Livolsi, S., Franz, S., Costa, A., Buoio, E., Bazzocchi, C., Bestetti, M., Selli, E., Chiarello, G.L., 2023. Innovative photoelectrocatalytic water remediation system for ammonia abatement. Catalys. Tod. 413-415, 113996. https://doi.org/10.1016/j.catt....
 
67.
Lu, S., Chen, L., Huang, Q., Yang, L., Du, C., Li, X., Yan, J., 2014. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma. Chemosph. 117, 781-5. https://doi.org/10.1016/j.chem....
 
68.
Lucentini, I., Garcia, X., Vendrell, X., Llorca, J., 2021. Review of the decomposition of ammonia to generate hydrogen. Ind. Eng. Chem. Res. (60), 18560-18611. https://doi.org /10.1021 /acs.iecr.1c00843.
 
69.
Luo, Z., Wang, T., Ren, J., Deng, J., Shu, C., Huang, A., et al., 2017. Effects of ammonia on the explosion and flame propagation characteristics of methane-air mixtures. J. Loss Prev. Process Indust. 47, 120-128.
 
70.
Ma, R, Yu, K, Xiao, S, Liu, S, Ciais, P, Zou, J., 2022. Data-driven estimates of fertilizer-induced soil NH3, NO and N2O emissions from croplands in China and their climate change impacts. Glob. Chang. Biol. 28(3), 1008-1022. https://doi.org/10.1111/gcb.15....
 
71.
Ma, R., Zou, J., Han, Z., Yu, K., Wu, S., Li, Z., et al., 2021. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop-specific emission factors. Global Change Biol. 27(4), 855-867. https://doi.org/10.1111/gcb.15....
 
72.
Marco, Y., Roldán, L., Armenise, S., García-Bordejé, E., 2013. Support-induced oxidation state of catalytic ru nanoparticles on carbon nanofibers that were doped with heteroatoms (O, N) for the Decomposition of NH3. ChemCatChem 5(12), 3829-383. https://doi.org/10.100 2/cctc.201300455.
 
73.
Maslova, V., Fourré, E., Veryasov, G., Nesterenko, N., Grishin, A., Louste, C., et al., 2023. Ammonia decomposition in electric field over Ce-based materials. ChemCatChem 15(4), e202201626. https://doi.org/10.1002/cctc.2....
 
74.
Mendes, L.B., Pieters, J.G., Snoek, D., Ogink, N.W.M., Brusselman, E., Demeyer, P., 2017. Reduction of ammonia emissions from dairy cattle cubicle houses via improved management- or design-based strategies: a modeling approach. Sci. Total Environ. 574, 520-531. https://doi.org/10.1016/j.scit....
 
75.
Mikami, Y., Yoneda, H., Tatsukami, Y., Aoki, W., Ueda, M., 2017. Ammonia production from amino acid-based biomass-like sources by engineered Escherichia coli. AMB Expr. 7, 83. https://doi.org/10.1186/s13568....
 
76.
Miyahira, K., Aziz, M., 2022. Hydrogen and ammonia production from low-grade agricultural waste adopting chemical looping process. J. Clean Product. 372, 133827. https://doi.org/10.1016/j.jcle....
 
77.
Miyaoka, H., Ichikawa, T., Hino, S., Kojima, Y., 2011. Compressed hydrogen production via reaction between liquid ammonia and alkali metal hydride. Ener. 36(14) 8217-8220. https://doi.org/10.1016/j.ijhy....
 
78.
Młotek, M., Perron, M., Krawczyk, K., 2021. Ammonia decomposition in a gliding discharge plasma. Enzy. Technol. 9(12), 2100677. https://doi.org/10.1002/ente.2....
 
79.
Mukherjee, S., Devaguptapu, S.V., Sviripa, A., Lund, C.R.F., Wu, G., 2018. Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. 226, 162-181.
 
80.
Nagami, G.T., Hamm, L.L., 2017. Regulation of acid-base balance in chronic kidney disease. Adv Chronic Kidney Dis. 24(5), 274-279. https://doi.org/10.1053/j.ackd....
 
81.
Nagaoka, K., Eboshi, T., Abe, N., Miyahara, S.I., Honda, K., Sato, K., 2014. Influence of basic dopants on the activity of Ru/Pr for hydrogen production by ammonia decomposition. Int. J. Hydrogen Energy 39(35), 20731-20735. https://doi.org/10.1016/j.ijhy....
 
82.
Nagaoka, K., Eboshi, T., Takeishi, Y., Tasaki, R., Honda, K., Imamura, K., et al., 2017. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst. Sci. Adv. 3(4), e1602747. https://doi.org/10.1126/sciadv....
 
83.
Naseem, S., King, A.J., 2018. Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ. Sci. Polluti Res. 25(16), 15269-15293. https://doi.org/10.1007/s11356....
 
84.
Ng, P. F., Li, L., Wang, S., Zhu, Z., Lu, G., Yan, Z., 2007. Catalytic Ammonia decomposition over industrial-waste-supported Ru catalysts. Environ. Sci. Technol. 41(10), 3758-3762. https://doi.org/10.1021/es0623....
 
85.
Okura, K., Miyazaki, K., Muroyama, H., Matsui, T., Eguchi, K., 2018. Ammonia Decomposition over ni catalysts supported on perovski tetype oxides for the on-site generation of hydrogen. RSC Adv. 8(56), 32102-32110. https://doi.org/10.1039/C8RA06....
 
86.
Palone, O., Gagliardi, G.G., Mechelli, M., Cedola, L., Borello, D., 2023.Techno-economic analysis of sustainable methanol and ammonia production by chemical looping hydrogen generation from waste plastic. Energy Convers Manag. 292, 117389.
 
87.
Park, C., Kwak, H., Moon, G.-h., Kim, W., 2021. Biomimetic photocatalysts for the conversion of aqueous- and gas-phase nitrogen species to molecular nitrogen via denitrification and ammonia oxidation. J. Mater Chem. 9(35), 19179-19205. https://doi.org/10.1039/D1TA02....
 
88.
Pereira, R.J.L., Argyris, P.A., Spallina, V., 2020. A comparative study on clean ammonia production using chemical looping based technology. Appl. Energy 280, 115874.
 
89.
Raróg-Pilecka, W., Szmigiel, D., Kowalczyk, Z., Jodzis, S., Zielinski, J., 2003. Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium. J. Catalys. 218(2), 465-469.
 
90.
Richardson, A.J., McKain, N., Wallace, R.J., 2013. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. BMC Microbiol. 13, 6. https://doi.org/10.1186/1471-2....
 
91.
Ristig, S., Poschmann, M., Folke, J., Gómez-Cápiro, O., Chen, Z., Sanchez-Bastardo, N., et al., 2022. Ammonia decomposition in the process chain for a renewable hydrogen supply. Chemie Ingen. Techn. 94(10), 1413-1425. https://doi.org/10.1002/cite.2....
 
92.
Roy, B., Hajari, A., Manna, J., Sharma, P., 2018. Supported ammonia borane decomposition through enhanced homopolar B-B coupling. Dalton Trans. 47, 6570-6579. https://doi.org/10.1039/C8DT00....
 
93.
Sandaka, B.P., Kumar, J., 2023. Alternative vehicular fuels for environmental decarbonization: A critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel. Chem. Eng. J., Adv. 14, 100442. https://doi.org/10.1016/j.ceja....
 
94.
Sayas, S., Morlanés, N., Katikaneni, S.P., Harale, A., Solami, B., Gascon, J., 2020. High Pressure Ammonia Decomposition on Ru-K/CaO Catalysts. Catal. Sci. Technol. 10(15), 5027-5035.
 
95.
Seyfeli, R.C., Varisli, D., 2022. Performance of microwave reactor system in decomposition of ammonia using nickel based catalysts with different supports. Int. J. Hydrogen Ener. 47(34), 15175-15188. https://doi.org/10.1016/j.ijhy....
 
96.
Shahsavari, M., Konnov, A.A., Valera-Medina, A., Jangi, M., 2022. On nanosecond plasma-assisted ammonia combustion: Effects of pulse and mixture properties. Combust Flame. 245, 112368. https://doi.org/10.1016/j.comb....
 
97.
Silva, P.H.I, Mohebbi, N., 2022. Kidney metabolism and acid-base control: back to the basics. Pflugers Arch. 474(8), 919-934. doi: 10.1007/s00424-022-02696-6.
 
98.
Son, Y.S., Kim, K.H., Kim, K.J., Kim, J.-C., 2013. Ammonia decomposition using electron beam. Plasma Chem Plasma Process. 33, 617-629. https://doi.org/10.1007/s11090....
 
99.
Sun, H., Zhang, X., Zhang, F., Yang, H., Lu, J., Ge, S., et al., 2021. Tetrasphaera, rather than Candidatus Accumulibacter as performance indicator of free ammonia inhibition during the enhanced biological phosphorus removal processes. J. Environ. Chemic. Eng. 9(5), 106219. https://doi.org/10.1016/j.jece....
 
100.
Tagliazucca, V., Schlichte, K., Schüth, F., Weidenthaler, C., 2013. Molybdenum-based catalysts for the decomposition of ammonia: In situ X-ray diffraction studies, microstructure, and catalytic properties. J. Catalysis 305, 277-289. https://doi.org/10.1016/j.jcat....
 
101.
Torrente-Murciano, L., Hill, A.K., Bell, T.E., 2017. Ammonia decomposition over cobalt/carbon catalysts-effect of carbon support and electron donating promoter on activity. Catal. Today 286, 131-140. https://doi.org/10.1016/j.catt....
 
102.
Tunå P., Hulteberg C., Ahlgren S., 2014. Techno-economic assessment of nonfossil ammonia production. Environ. Prog. Sustain Ener. 33, 1290-1297.
 
103.
Vikrant, K., Kim, K.-H., Dong, F., Giannakoudakis, D.A., 2020. Photocatalytic Platforms for removal of ammonia from gaseous and aqueous matrixes: Status and Challenges. ACS Catalys 10(15), 8683-8716. https://doi.org/10.1021/acscat....
 
104.
Weiner, I.D., Verlander, J.W., 2013. Renal ammonia metabolism and transport. Compr. Physiol. 3(1), 201-20. https://doi.org/10.1002/cphy.c....
 
105.
Wu, L., Tang, D., Xue, J., Liu, S., Wang, J., Ji, H., et al., 2022. Competitive non‐radical nucleophilic attack pathways for NH3 oxidation and H2O oxidation on hematite photoanodes. Angew Chem. 6(50), e202214580. https://doi.org/10.1002/ange.2....
 
106.
Wyer, K.E., Kelleghan, D.B., Blanes-Vidal, V., Schauberger, G., Curran, T.P., 2022. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 323, 116285.
 
107.
Xu, R., Tian, H., Pan, S., Prior, S.A., Feng, Y., Batchelor, W.D., et al., 2019. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Glob. Chang. Biol. 25(1), 314-326. https://doi.org/10.1111/gcb.14....
 
108.
Xun, Y., He, X., Yan, H., Gao, Z., Jin, Z., Jia, C., 2017. Fe- and CoDoped lanthanum oxides catalysts for ammonia decomposition: Structure and catalytic performances. J. Rare Earth. 35(1), 1523. https://doi.org/10.1016/S1002-....
 
109.
Yan, Z., Dai, Z., Zheng, W., Lei, Z., Qiu, J., Kuang, W., et al., 2021. Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals. Water Res. 205, 117678. https://doi.org/10.1016/j. watres. 2021.117678.
 
110.
Yousefi, Rizi, H.A., Shin, D., 2022. Green hydrogen production technologies from ammonia cracking. Energ. 15, 8246. https://doi.org/10.3390/en1521....
 
111.
Yuzawa, H., Mori, T., Itoh, H., Yoshida, H., 2012. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst. J. Phys. Chem. C. 116(6), 4126-4136. https://doi.org/10.1021/jp2097....
 
112.
Zhang, L., Jacob, D.J., Knipping, E.M., Kumar, N., Munger, J.W., Carouge, C.C., et al., 2012. Nitrogen deposition to the United States: distribution, sources, and processes. Atmos. Chem. Phys. 12, 4539-54. https://doi.org/10.5194/Acp-12....
 
113.
Zhang, S., He, Z., Li, X., Zhang, J., Zang, Q., Wang, S., 2020. Building heterogeneous nanostructures for photocatalytic ammonia decomposition. Nanoscale Adv. 2, 3610.
 
114.
Paik, B., Tsubota, M., Ichikawa, T., Kojima, Y., 2010. Catalytic Effect of ATiO3 (A = Sr, Ba) on ammonia decomposition during mechanical milling. Chem. Commun. 46(22), 3982-3984. https://doi.org/10.1039/C00277....
 
115.
Zhu, L., Henze, D.K., Bash, J.O., Cady-Pereira, K.E., Shephard, M.W., Luo, M., et al., 2015. Sources and Impacts of atmospheric NH3: current understanding and frontiers for modeling, measurements, and remote sensing in North America. Curr Pollution Rep. 1, 95-116. https://doi.org/10.1007/s40726....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top