RESEARCH PAPER
Vis/NIR and FTIR spectroscopy supported by machine learning techniques to distinguish pure from impure Iranian rice varieties
 
More details
Hide details
1
Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
 
2
Department of Biosystems Engineering, Faculty of Agriculture, University of Guilan, P. O. Box: 41635-1314, Rasht, Guilan, Iran
 
3
Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
 
4
Center of Innovation and Research on Healthy and Safe Food, University of Agriculture in Kraków, Balicka 104, 30-149 Kraków, Poland
 
5
Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
 
6
Department of Petroleum Engineering, Knowledge University, Erbil 44001, Iraq
 
 
Final revision date: 2024-02-09
 
 
Acceptance date: 2024-02-26
 
 
Publication date: 2024-04-18
 
 
Corresponding author
Marek Gancarz   

Faculty of Production and Power Engineering, University of Agriculture in Krakow, Poland
 
 
Int. Agrophys. 2024, 38(2): 203-211
 
HIGHLIGHTS
  • Spectroscopy; Authenticity verification; Rice quality control; Machine learning algorithms
KEYWORDS
TOPICS
ABSTRACT
Rice is an annual plant from the family of Oryzeae, provides the main food for about 2.5 billion people. The quality of this product is under the influence of various factors. Quality control and adulteration detection are among the main issues in the rice industry for which, various methods have been developed. Some of these methods are costly or with low accuracy. Therefore, this study aimed to investigate and detect adulteration with spectroscopic devices and chemometric methods as well as neural network approach. The results of this study indicated the highest accuracy (100%) in the detection of authentic rice for Fourier-transform infrared combined with C-support vector machine (linear and polynomial functions) and visible–near–infrared device with quadratic discriminant analysis, multivariate discriminant analysis, Bayesian, and Decision Tree. The lowest accuracy was also related to support vector machine method with Sigmoid function for both devices. Principal component analysis method also provided very high accuracy for both devices (accuracy of 100% for visible–near–infrared and 99% for Fourier-transform infrared).
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES (71)
1.
Abdullah A., Adom A., Shakaff A., Masnan M., Zakaria A., Rahim N., and Omar O., 2015. Classification of malaysia aromatic rice using multivariate statistical analysis. In: AIP Publishing, https://doi.org/10.1063/1.4915....
 
2.
Abdullah A., Rahim N., Masnan M., Sa'ad F., Zakaria A., Shakaff A., and Omar O., 2016. Rice and the electronic nose. In: Electronic noses and tongues in food science. Elsevier, 103-113, https://doi.org/10.1016/B978-0....
 
3.
Aghili N.S., Rasekh M., Karami H., Azizi V., and Gancarz M., 2022. Detection of fraud in sesame oil with the help of artificial intelligence combined with chemometrics methods and chemical compounds characterization by gas chromatography-mass spectrometry. LWT, 167, 113863, https://doi.org/10.1016/j.lwt.....
 
4.
Alamprese C., Casale M., Sinelli N., Lanteri S., and Casiraghi E., 2013. Detection of minced beef adulteration with turkey meat by UV-vis, NIR and MIR spectroscopy. LWT-Food Sci. Technol., 53(1), 225-232, https://doi.org/10.1016/j.lwt.....
 
5.
Alimohammadi F., Rasekh M., Afkari Sayyah A. H., Abbaspour-Gilandeh Y., Karami H., Rasooli Sharabiani V., Fioravanti A., Gancarz M., Findura P., and Kwaśniewski D., 2022. Hyperspectral imaging coupled with multivariate analysis and artificial intelligence to the classification of maize kernels. Int. Agrophys., 36(2), 83-91, https://doi.org/10.31545/intag....
 
6.
Ben‐Gera I. and Norris K.h., 1968. Direct spectrophotometric determination of fat and moisture in meat products. J. Food Sci., 33(1), 64-67, https://doi.org/10.1111/j.1365....
 
7.
Berrueta L.A., Alonso-Salces R.M., and Héberger K., 2007. Supervised pattern recognition in food analysis. J. Chromatogr. A, 1158(1-2), 196-214, https://doi.org/10.1016/j.chro....
 
8.
Bevilacqua M., Bucci R., Magrì A.D., Magrì A.L., and Marini F., 2012. Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics: A case study. Anal. Chim. Acta, 717, 39-51, https://doi.org/10.1016/j.aca.....
 
9.
Black C., Haughey S.A., Chevallier O.P., Galvin-King P., and Elliott C.T., 2016. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chem., 210, 551-557, https://doi.org/10.1016/j.food....
 
10.
Callao M.P. and Ruisánchez I., 2018. An overview of multivariate qualitative methods for food fraud detection. Food Control, 86, 283-293, https://doi.org/10.1016/j.food....
 
11.
Champagne E.T., 2008. Rice aroma and flavor: A literature review. Cereal Chem., 85(4), 445-454, https://doi.org/10.1094/CCHEM-....
 
12.
Choudhury P.R., Kohli S., Srinivasan K., Mohapatra T., and Sharma R., 2001. Identification and classification of aromatic rices based on DNA fingerprinting. Euphytica, 118, 243-251, https://doi.org/10.1023/A:1017....
 
13.
Currell G., 2015. Scientific data analysis. Oxford University Press, USA, https://doi.org/10.1093/hesc/9....
 
14.
Fu H., Yin Q., Xu L., Wang W., Chen F., and Yang T., 2017. A comprehensive quality evaluation method by FT-NIR spectroscopy and chemometric: Fine classification and untargeted authentication against multiple frauds for chinese ganoderma lucidum. Spectrochim. Acta A. Mol. Biomol. Spectrosc., 182, 17-25, https://doi.org/10.1016/j.saa.....
 
15.
Georgouli K., Del Rincon J.M., and Koidis A., 2017. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and raman spectroscopic data. Food Chem., 217, 735-742, https://doi.org/10.1016/j.food....
 
16.
Gok S., Severcan M., Goormaghtigh E., Kandemir I., and Severcan F., 2015. Differentiation of anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem., 170, 234-240, https://doi.org/10.1016/j.food....
 
17.
Gujjar H.S. and Siddappa D.M., 2013. A method for identification of basmati rice grain of India and its quality using pattern classification. Int. J. Eng. Res. Appl., 3(1), 268-273.
 
18.
Haghbin N., Bakhshipour A., Mousanejad S., and Zareiforoush H., 2023. Monitoring botrytis cinerea infection in kiwifruit using electronic nose and machine learning techniques. Food Bioproc. Tech., 16(4), 749-767, https://doi.org/10.1007/s11947....
 
19.
Han Z., Wan J., Deng L., and Liu K., 2016. Oil adulteration identification by hyperspectral imaging using QHM and ICA. PLoS One, 11(1), e0146547, https://doi.org/10.1371/journa....
 
20.
Hoffman B., 2013. Top 10 'at risk'fraudulent foods and why you should feel scammed. Forbes.
 
21.
Hu L., Yin C., Ma S., and Liu Z., 2019. Vis-NIR spectroscopy combined with wavelengths selection by PSO optimization algorithm for simultaneous determination of four quality parameters and classification of soy sauce. Food Anal. Methods, 12, 633-643, https://doi.org/10.1007/s12161....
 
22.
Hu W., Bai Z., Hu R., Diao Y., Xu X., and Wang H., 2023. Effects of different management patterns on greenhouse gas emissions from single-season rice fields. Int. Agrophys., 37(4), 365-376, https://doi.org/10.31545/intag....
 
23.
Jana A., Bandyopadhyay R., Tudu B., Roy J.K., Bhattacharyya N., Adhikari B., Kundu C., and Mukherjee S., 2011. Classification of aromatic and non-aromatic rice using electronic nose and artificial neural network. 2011 IEEE Recent Advances in Intelligent Computational Systems. Trivandrum, India, 291-294, https://doi.org/10.1109/RAICS.....
 
24.
Jolliffe I.T., 2002. Choosing a subset of principal components or variables. In: Principal Component Analysis (Ed. I.T. Jolliffe). Springer, New York, 111-149.
 
25.
Karami H., Rasekh M., and Mirzaee-Ghaleh E., 2020a. Application of the e-nose machine system to detect adulterations in mixed edible oils using chemometrics methods. J. Food Process. Preserv., 44(9), e14696, https://doi.org/10.1111/jfpp.1....
 
26.
Karami H., Rasekh M., and Mirzaee-Ghaleh E., 2020b. Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas. Charact., 14(5), 2600-2610, https://doi.org/10.1007/s11694....
 
27.
Karami H., Rasekh M., and Mirzaee-Ghaleh E., 2020c. Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemometr. Intell. Lab. Sys., 206, 104165, https://doi.org/10.1016/j.chem....
 
28.
Karray F.O. and De Silva C.W., 2004. Soft computing and intelligent systems design, theory, tools, and applications. Pearson, Addison-Wesley, England.
 
29.
Kaur H. and Singh B., 2013. Classification and grading rice using multi-class SVM. Int. J. Sci. Res. Publ., 3(4), 1-5.
 
30.
Khorramifar A., Karami H., Wilson A.D., Sayyah A.H.A., Shuba A., and Lozano J., 2022a. Grape cultivar identification and classification by machine olfaction analysis of leaf volatiles. Chemosensors, 10(4), 125, https://doi.org/10.3390/chemos....
 
31.
Khorramifar A., Rasekh M., Karami H., Covington J.A., Derakhshani S.M., Ramos J., and Gancarz M., 2022b. Application of mos gas sensors coupled with chemometrics methods to predict the amount of sugar and carbohydrates in potatoes. Molecules, 27(11), 3508, https://doi.org/10.3390/molecu....
 
32.
Khorramifar A., Sharabiani V.R., Karami H., Kisalaei A., Lozano J., Rusinek R., and Gancarz M., 2022c. Investigating changes in pH and soluble solids content of potato during the storage by electronic nose and Vis/NIR spectroscopy. Foods, 11(24), 4077, https://doi.org/10.3390/foods1....
 
33.
Khorramifar A., Kisalaei Ų.A., and Sharabiani R.V., 2023a. Detection and identification of potato cultivars by olfactory machine by artificial neural network and LDA methods. J. Environ. Sci., 8(3), 6922-6927, https://doi.org/10.22034/JESS.....
 
34.
Khorramifar A., Rasekh M., Karami H., Lozano J., Gancarz M., Łazuka E., and Łagód G., 2023b. Determining the shelf life and quality changes of potatoes (Solanum tuberosum) during storage using electronic nose and machine learning. PLoS ONE, 18(4), e0284612, https://doi.org/10.1371/journa....
 
35.
Khorramifar A., Rasekh M., Karami H., Malaga-Toboła U., and Gancarz M., 2021. A machine learning method for classification and identification of potato cultivars based on the reaction of mos type sensor-array. Sensors, 21(17), 5836, https://doi.org/10.3390/s21175....
 
36.
Kisalaei Ů., Shahgholi G., Moeinfar A., and Khorramifar A., 2022. Close infrared spectroscopy to estimate the sugar content of different potato cultivars. J. Environ. Sci., 7(3), 5121-5128, https://doi.org/10.22034/JESS.....
 
37.
Lamidi W., Ogunlade C., Olaniyan A., Shittu K., Murtadha M., Ajibade A., and Fadeyibi A., 2023. Moisture dependent: physical properties of baobab seeds (Adansonia digitata L.). Agric. Engin., 27(1), 33-46, https://doi.org/10.2478/agrice....
 
38.
Lee F.Y., Htar T.T., and Akowuah G.A., 2015. Atr-ftir and spectrometric methods for the assay of crocin in commercial saffron spices (Crocus savitus L.). Int. J. Food Prop., 18(8), 1773-1783, https://doi.org/10.1080/109429....
 
39.
Liu C., Hao G., Su M., Chen Y., and Zheng L., 2017. Potential of multispectral imaging combined with chemometric methods for rapid detection of sucrose adulteration in tomato paste. J. Food Engin., 215, 78-83, https://doi.org/10.1016/j.jfoo....
 
40.
Liu W., Xu X., Liu C., and Zheng L., 2021. Nondestructive detection of authenticity of Thai jasmine rice using multispectral imaging. J. Food Qual., 2021, 1-8, https://doi.org/10.1155/2021/6....
 
41.
Lohumi S., Joshi R., Kandpal L.M., Lee H., Kim M.S., Cho H., Mo C., Seo Y.-W., Rahman A., and Cho B.-K., 2017. Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Addit. Contam. Part A, 34(5), 678-686, https://doi.org/10.1080/194400....
 
42.
Miaw C.S.W., Assis C., Silva A.R.C.S., Cunha M.L., Sena M.M., and de Souza S.V.C., 2018. Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods. Food Chem., 254, 272-280, https://doi.org/10.1016/j.food....
 
43.
Nayak P.P., Nandi S., Bhunia K., and Datta A.K., 2023. Modelling the extraction process parameters of amorphous silica-rich rice husk ash using hybrid RSM-BPANN-MOGA optimization technique. Mat. Chem. Phys., 293, 126944, https://doi.org/10.1016/j.matc....
 
44.
Neapolitan R.E., 2004. Learning bayesian networks. Pearson Prentice Hall, Upper Saddle River, USA, https://doi.org/10.1145/132794....
 
45.
Nunes K.M., Andrade M.V.O., Santos Filho A.M., Lasmar M.C., and Sena M.M., 2016. Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and atr-ftir spectroscopy. Food Chem., 205, 14-22, https://doi.org/10.1016/j.food....
 
46.
Omid M., Mahmoudi A., and Omid M.H., 2010. Development of pistachio sorting system using principal component analysis (PCA) assisted artificial neural network (ANN) of impact acoustics. Expert Syst. Appl., 37(10), 7205-7212, https://doi.org/10.1016/j.eswa....
 
47.
Ordoudi S., Cagliani L., Melidou D., Tsimidou M., and Consonni R., 2017. Uncovering a challenging case of adulterated commercial saffron. Food Control, 81, 147-155, https://doi.org/10.1016/j.food....
 
48.
Pearce T.C., Schiffman S.S., Nagle H.T., and Gardner J.W., 2006. Handbook of machine olfaction: Electronic nose technology. John Wiley & Sons, Germany.
 
49.
Petrakis E.A. and Polissiou M.G., 2017. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared fourier transform spectroscopy coupled with chemometrics. Talanta, 162, 558-566, https://doi.org/10.1016/j.tala....
 
50.
Qamar M., Siyah Poush M.R., and Hasibi P., 2013. Salinity tolerance assessment of rice sucrose transporter antisense lines (OsSUT1) at seedling stage (Oryza sativa var. TaiPai). Agric. Biotechnol. J., 5(3), 87-98.
 
51.
Quack M. and Merkt F., 2011. Handbook of high-resolution spectroscopy. John Wiley & Sons, Germany, https://doi.org/10.1002/978047....
 
52.
Quiñones M.D., Martínez L.A., Herrera S.M., Quiñones O.M., and Laredo R.F., 2018. Near-Infrared Spectroscopy (NIRS) applied to legume analysis: A Review. Int. J. Innov. Sci. Eng. Technol., 8(4), 29-39.
 
53.
Rasooli Sharabiani V. and Khorramifar A., 2022. Recognition and classification of pure and adulterated rice using the electronic nose. J. Environ. Sci. Stud., 7(2), 4904-4910, https://doi.org/10.22034/JESS.....
 
54.
Rasooli Sharabiani V., Kisalaei َA., and Khorramifar A., 2022. Quantitative analysis of organic acids in potatoes using NIR spectroscopy with PLS and ANN methods. J. Environ. Sci. Stud., 7(4), 5541-5549, https://doi.org/10.22034/jess.....
 
55.
Rasooli Sharabiani V., Khorramifar A., Karami H., Lozano J., Tabor S., Darvishi Y., and Gancarz M., 2023. Non-destructive test to detect adulteration of rice using gas sensors coupled with chemometrics methods. Int. Agrophys., 37(3), 235-244, https://doi.org/10.31545/intag....
 
56.
Rios-Corripio M., Rios-Leal E., Rojas-Lopez M., and Delgado-Macuil R., 2011. FTIR characterization of mexican honey and its adulteration with sugar syrups by using chemometric methods. In: J. Phys.: Conference Series. IOP Publishing: 012098, https://doi.org/10.1088/1742-6....
 
57.
Rohman A. and Man Y.C., 2010. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int., 43(3), 886-892, https://doi.org/10.1016/j.food....
 
58.
Rusinek R., Dobrzański Jr. B., Gawrysiak-Witulska M., Siger A., Żytek A., Karami H., Umar A., Lipa T., and Gancarz M., 2024. Effect of the roasting level on the content of bioactive and aromatic compounds in Arabica coffee beans. Int. Agrophys., 38(1), 31-42, https://doi.org/10.31545/intag....
 
59.
Shao Y., He Y., Gómez A.H., Pereir A.G., Qiu Z., and Zhang Y., 2007. Visible/near infrared spectrometric technique for nondestructive assessment of tomato 'Heatwave' (Lycopersicum esculentum) quality characteristics. J. Food Engin., 81(4), 672-678, https://doi.org/10.1016/j.jfoo....
 
60.
Smith E. and Dent G., 2019. Modern raman spectroscopy: A practical approach. John Wiley & Sons, https://doi.org/10.1002/978111....
 
61.
Stuart B.H., 2004. Infrared spectroscopy: Fundamentals and applications. John Wiley & Sons, https://doi.org/10.1002/047001....
 
62.
Sun T., Xu H.-R., and Ying Y.-B., 2009. Progress in application of near infrared spectroscopy to nondestructive on-line detection of products/food quality (in Chinese). Spectrosc. Spect. Anal., 29(1), 122-126, https://doi.org/10.3964/j.issn....
 
63.
Tarighi J. and Khorramifar A., 2023. Evaluation ability of the NIR-spectroscopy for detecting the ripening time of walnuts. J. Environ. Sci. Stud., 8(1), 5850-5856, https://doi.org/10.22034/jess.....
 
64.
Valand R., Tanna S., Lawson G., and Bengtström L., 2020. A review of fourier transform infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit. Contam. Part A, 37(1), 19-38, https://doi.org/10.1080/194400....
 
65.
Van Nguyen N. and Ferrero A., 2006. Meeting the challenges of global rice production. Paddy Water Environ., 4, 1-9, https://doi.org/10.1007/s10333....
 
66.
Wielogorska E., Chevallier O., Black C., Galvin-King P., Delêtre M., Kelleher C.T., Haughey S.A., and Elliott C.T., 2018. Development of a comprehensive analytical platform for the detection and quantitation of food fraud using a biomarker approach. The oregano adulteration case study. Food Chem., 239, 32-39, https://doi.org/10.1016/j.food....
 
67.
Williams P., Manley M., and Antoniszyn J., 2019. Near infrared technology: Getting the best out of light. African Sun Media, https://doi.org/10.18820/97819....
 
68.
Wongpornchai S., Dumri K., Jongkaewwattana S., and Siri B., 2004. Effects of drying methods and storage time on the aroma and milling quality of rice (Oryza sativa L.) cv. Khao Dawk Mali 105. Food Chem., 87(3), 407-414, https://doi.org/10.1016/j.food....
 
69.
Xu S., Zhou Z., Lu H., Luo X., and Lan Y., 2014. Improved algorithms for the classification of rough rice using a bionic electronic nose based on PCA and the wilks distribution. Sensors, 14(3), 5486-5501, https://doi.org/10.3390/s14030....
 
70.
Yinian L., Yulun C., Qishuo D., Ruiyin H., and Weimin D., 2022. Analysis of relationship between head rice yield and breaking force of Japonica rice grains at different maturity stages. Int. Agrophys., 36(1), 1-11, https://doi.org/10.31545/intag....
 
71.
Zareiforoush H., Minaei S., Alizadeh M.R., and Banakar A., 2016. Qualitative classification of milled rice grains using computer vision and metaheuristic techniques. J. Food Sci. Technol., 53, 118-131, https://doi.org/10.1007/s13197....
 
eISSN:2300-8725
ISSN:0236-8722
Journals System - logo
Scroll to top