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A b s t r a c t. The aim of the study was to reveal the rela-
tionship between soil properties and grain yields in an East 
Hungarian region in regard to weather conditions. Soil pH, EC, 
carbonate content, soluble and exchangeable Na+, texture, orga- 
nic carbon, and nutrient contents were analyzed. Yield data 
(maize, winter wheat, sunflower) from 10 years were standardi- 
zed using calculated relative yield and yield variability. Weather con- 
ditions were characterized by the Pálfai Drought Index. 
Hydrological and topographical conditions were characterized 
by the mean altitude of plots. The ranged pedological variables 
were analyzed using principal component analysis with Varimax 
rotation. The principal component analysis showed that three 
principal components with eigenvalues greater than one explai- 
ned more than 84% of the variability of soil properties. The 
multiple stepwise principal regression analysis showed that the 
mean relative yield was linearly correlated with all the three prin-
cipal component factors (R2 = 0.49, p < 0.01). In droughty years, 
the sodification, salinization, soil texture, and nutrient contents 
determined the yields (R2 = 0.30, p < 0.05). In humid years, the 
lower topographical position, soil organic matter, and nutrient 
contents were the main limiting factors (R2 = 0.40, p < 0.01). 
Consequently, the variables can effectively explain the yield varia- 
bility together with other variables as linear combinations.

K e y w o r d s: principal component regression analysis, soil-
plant relationship, weather conditions

INTRODUCTION

The relationship between crop yield and soil is very 
complex and depends on complex interactions between 
physical and chemical properties of soil and other exter-
nal natural factors (Sys et al., 1991). Understanding the 
variability of landscape and soil properties and their effect 
on crop yield is a critical component of site-specific and 
sustainable management systems and land use planning. 
Several statistical methods have been developed to predict 

the yields. The suitability of these methods depends on the 
structure and size of the database, but each method has its 
own limitations.

By applying stepwise multivariate linear regression ana- 
lysis (SMLR), several authors have found that pedological 
indicators have a significant relationship with crop yield 
(Andrews and Carrol, 2001; Brubaker et al., 1994; De Araujo 
et al., 2009; Rezaei et al., 2006; Smith et al., 1993). Simple li- 
near functions, however, are usually inappropriate to de- 
scribe the effect of soil indicators on the productivity. Fur- 
thermore, intercorrelation among soil properties can result in 
multicollinearity problems regarding relationships between 
soil properties and crop yield. However, removal of some 
variables could contribute to losing important information.

To solve multicollinearity problems between indepen-
dent variables, several authors applied partial least squares 
regression (PLS) (Corwin et al., 2003; Ping et al., 2004). 
Loadings from linear combinations of variables in PLS 
allowed identifying soil properties that have the greatest 
influence on yields. Another option is combining variables 
based on their linear correlation using principal component 
analysis (PCA). The PCA can simplify the structure of 
a set of variables by replacing those with a few uncorrela- 
ted linear combinations of original variables. According to 
Stenberg (1998), this method may produce new less inter-
pretable combined variables. These PCA factors do not 
explain the total variance of the entire data set. However, 
several authors determined the relationships between soil 
attributes and yields by conducting linear multivariate 
regression processes with derived PCA factors as inde-
pendent variables (Ayoubi et al., 2009; Cox et al., 2003; 
Mallarino et al., 1999; Shukla et al., 2004b).
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Classification and regression trees (CARTs) are more 
robust techniques for predicting yield variability responses 
to variations of soil properties and management practices 
due to their low prediction error (Ahman and Bhatti, 2015; 
Tittonell et al., 2007; Zheng et al., 2009).

In our region, a research team tried to assess the inter-
actions of climatic, topographic, hydrological, edaphic, and 
management factors to determine a production process in 
Hungary (Tóth, 2011). The research was based on process-
ing of the national databases relating to soil, meteorology, 
fertilizing, and crop yields were processed using a general 
linear model. They have proved that it is worth examining 
the soil productivity potential at the genetic soil unit level. 
In addition, the yield variability depends on soil attributes 
that affect soil moisture regime (eg texture, topographical 
position) and the soil nutrient supply. However, the reasons 
for the yield variability are still poorly understood.

According to our hypothesis, simple pedological indica-
tors by themselves are not suitable to reveal the relationship 
between soil properties and crop yield. Namely, it would 
be difficult to find some usable equation that explains pro-
ductivity. Multivariate statistical tools are necessary. The 
aim of this paper was to reveal the relationship between 
soil parameters and productivity in an East Hungarian 
region and to prove better performance in predictions of 
a potential crop yield variation in regard to different weath-
er conditions over years.

MATERIALS AND METHODS

The research site covers approximately 225 ha and is 
located in East Hungary (21º13′21.1″-15′15.5″E, 47º17′5.7″ 
-19′8.7″N) at an altitude of 86-89.5 m. The site was classi-
fied as according to the Köppen climate classification (Cfa) 
climatic region due to warm temperate climate (Fábián and 
Matyasovszky, 2010) characterized by mean annual preci- 
pitation of 580 mm and mean annual temperature of 10.5°C. 
During the 10 years studied (2004-2013), there were 4 years 
of drought (2007; 2009; 2012 and 2013) with less than 
200 mm of precipitation from April to August. The years 
were separated into two groups according to the Pálfai 
Drought Index (PDI, Pálfai, 2002) (Table 1).

The depth of groundwater table is approximately 
50-300 cm. The soils developed on alluvial deposits with 
loam, loamy clay, and clay texture. They can be classified 
as Chernozems, Solonetz, and Gleysols (FAO, 2014). The 
agricultural management practice and crop rotation were 
the same on every plot. The management was characterized 
by conventional tillage in a nonirrigated system and nitro-
gen fertilization was only applied. The plot areas ranged 
from 1.04 to 31.90 ha (Fig. 1).

The soil survey was conducted in 2010 for analysis of 
physical and chemical properties that were previously con-
sidered important in land-use management in our region. 
Soil samples were collected at 0-100 at 20 cm depth incre-
ments (Fig. 1). Soil pH was measured in a 1:2.5 soil/ KCl 

T a b l e  1. Weather conditions of years 2004-2013 including mean temperature of April-August (TIV-VIII), weighted precipitation of 
October-August (PX-VIII) and Pálfai drought index (PDI) (Pálfai, 2002)

Year TIV-VIII (°C) Weighted PX-VIII (mm) 100
P

 TPDI
VIII-X

VIII-IV=   

2004 17.40 605.94 2.87

2005 17.52 578.06 3.03

2006 17.84 460.53 3.87

2007 19.66 361.63 5.44

2008 18.32 506.85 3.61

2009 19.24 326.87 5.89

2010 18.26 755.36 2.42

2011 18.56 552.99 3.36

2012 19.48 243.66 7.99

2013 18.84 309.19 6.09

Mean 18.51 470.12 4.46

Data source: Hungarian Meteorological Service, 2014. Boldface numbers: drought years, PDI>5.0.
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mixture, and electrical conductivity (EC) in a 1:5 soil/water 
mixture potentiometrically. Determination of the total carbo- 
nate content (CaCO3) was conducted according to the volu- 
metric method (MSZ, 1978). Determination of soluble and 
exchangeable sodium (AL-Na) was based on extraction with 
acid ammonium lactate (Egnér et al., 1960). Particles small-
er than 0.002 mm (clay) and 0.02 mm (clay + silt) were 
determined by the pipette method (MSZ, 1978). Organic 
carbon content (OC) was measured by the Turin method 
(Kononova, 1966). Homogeneous soil units were delimited 
based on the soil survey (Fig. 1). Mean soil properties (at 
0-100 cm depth) and surface elevation were calculated for 
each plot. Soil samples composed of 20 subsamples were 
collected for analysis of potentially available nutrients at 
0-30 cm depth from the 28 plots every year (2004-2013). The 
hydrolysable nitrogen content (ammonium- and nitrate-N 
and some easily available amino-N forms) was determined 
by oxidative hydrolysis according to Hargitai (1970) 
(Hargitai-N). Available phosphorous (AL-P2O5) and potas 
sium (AL-K2O) contents were determined with acidic 
ammonium lactate extraction (Egnér et al., 1960). These 
annual nutrient contents were averaged. Furthermore, 
an average altitude of the plots was calculated since the 
topographical position (microrelief) determines and char-
acterizes well the soil moisture regime and average depth of 
groundwater table. The spatial analysis and soil unit map-
ping were carried out by the software application QGIS 2.2.

Winter wheat (Triticum aestivum L.), maize (Zea mays L.), 
and sunflower (Helianthus annuus L.) yield data were col-
lected at each plot from 2004 to 2013. Since the potential 
productivity of soil does not equal current (and actual) 
yields and they are also determined by other external fac-
tors, we calculated relative mean yield and yield variability 
indices for ten years instead of analysing the raw yield data. 
The data were first standardized using the relative yield of 
each crop calculated as follows: 

,
maxY
Y

YR p
p =

 
       (1)

where: RYp is the relative yield of plot p (a value between 0 
and 1), Yp – yield of plot p (t ha-1), Ymax – maximum yield on 
the total research site over all plots (t ha-1). Then, the mean 
relative yields of all years, droughty years, and humid years 
( )pYR  were calculated for each plot p. Yield variability was 
expressed as follows: 

100,
)(

=)( p

p
p YR

YRDS
YRVC

    (2)

where: CV(RYp) is the yield variability of plot p (%), 
SD(RYp) is the standard deviation of the relative yield of 
plot p (2004-2013), ( )pYR  is the mean relative yield of plot 
p (2004-2013).

A principal component analysis (PCA) of the total data 
set of pedological variables were conducted with Varimax 
(orthogonal) rotation (Ayoubi et al., 2009; Cox et al., 2003; 
Shukla et al., 2004b). In order to obtain well interpretable 
PCs, the indicator values were first ranked in ascending or 
descending order using a linear function depending on whether 
a higher value was considered ‘beneficial’ or ‘detrimen- 
tal’ in terms of soil function (Table 2). To mitigate the lepto- 
kurtic character of variable AL-P2O5 and CaCO3, logarith- 
mic (ln) transformation was conducted. The PCA was based 
on the linear correlation between input indicators. 

With dependent variables ‘mean relative yield’ (RYp) 
and ‘yield variability’ (CV(RYp)), multiple linear regres-
sions were conducted with a stepwise method using the 
derived PC factors with eigenvalues greater than 1 (Kaiser, 
1960). All variables were examined as to whether there is 
any indication for nonlinear analysis but we did not find 
any reason. All data were statistically processed using IBM 
SPSS Statistics 20.

RESULTS AND DISCUSSION

The plots show striking differences in the yields. The 
mean yield of maize was 6.71 t ha-1 on the total arable land 
area, while the maximum yield was 10 t ha-1 on plots 17 and 
21. The mean yield of winter wheat was 4.63 t ha-1 on the 
total area while the maximum yield was 7.1 t ha-1 on plots 
3 and 5. The sunflower produced between 1.4 and 4.5 t ha-1 
(maximum yield was found on plot 23). The mean yield of 
sunflower was 2.77 t ha-1. The plots were clearly separated 
into three productivity classes along the mean relative yield 

Fig. 1. Arable plots (boldface numbers) and homogeneous soil 
units (small normal numbers) on the research site.
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and yield variability (Fig. 2). It seems that the highest yield 
and lowest variance were found on the Chernozems, the 
medium yield and medium variance on the Solonetz soils, 
and the lowest yield and highest variance on the Gleysols. 
Drought did not influence the yields substantially because 
of the high water capacity of soils (Fig. 3). However, plots 
with productivity class 3 had the lowest mean yield and 
greatest yield variability because of groundwater recharge 
or returning to the surface in humid years.

Therefore, it seems that any of the sodification, sali-
nization, high clay content, and the lower topographical 
position might determine the yields in our study. Under the 
meteorological/hydrological conditions of the Hungarian 
Plain, arable lands are sensitive and vulnerable to saliniza-
tion and extreme moisture regime stresses (Douaik et al., 
2007; Tóth et al., 2001). Soil salinity and sodicity are often 
related to the presence of a shallow groundwater table. The 
low agricultural utility of salt-affected and heavy-textured 

T a b  l e  2.  Descriptive statistics including mean, standard deviation (SD), kurtosis, skewness, and minimum and maximum values 
for soil physical and chemical properties of the plots (n = 28)

Variable Soil layer 
(cm) Mean SD Skewness Kurtosis Min Max

pH  0-100 7.39 0.24 0.72 0.39 7.07 7.95

CaCO3 (%)  0-100 7.72 3.44 1.69 2.87* 2.86 18.29

EC (µS cm-1)  0-100 293.46 136.39 1.13 -0.10 187.40 593.51

AL-Na (mg kg-1)  0-100 69.62 60.66 1.39 0.67 23.00 221.59

Topography (altitude, m)  – 87.68 0.51 0.40 -0.42 87.01 88.55

Silt + clay <0.02 mm (%) 0-100 44.98 10.61 0.99 0.61 31.55 72.36

Clay <0.002 mm (%) 0-100 14.89 6.86 1.27 0.99 18.48 33.30

OC (%) 0-100 1.47 0.26 -0.09 0.07 0.91 1.75

AL-P2O5 (mg kg-1)  0-30 126.26 62.35 2.06 4.97* 72.26 349.25

AL-K2O (mg kg-1)  0-30 259.04 50.40 0.32 -0.58 160.32 348.85

Hargitai-N (mg kg-1)  0-30 61.03 4.79 -1.16 -0.93 51.52 68.93

Ranked in: ↓ descending order (less is more beneficial), ↑ ascending order (more is more beneficial), *leptokurtic character, logarith-
mic transformation was conducted.

Fig. 2. Mean relative yield and variability of the yield of the plots (class 1 − low risk, class 2 − moderate risk, class 3 − high risk). 
Reference yield: relative yield of 1.0 = maximum yield of 10 years (maize, winter wheat, and sunflower: 10, 7.1 and 4.5 t ha-1, 
respectively).
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alkali soils are closely related to their unfavourable physi-
cal and hydrophysical properties, as well as their extreme 
moisture regime (Várallyay, 2008). The organic carbon, 
available nitrogen, phosphorus, and potassium contents 
were very different (Table 3) but considered relatively high 
(Csathó, 2005; Németh, 2006). The soil nutrient content 

also depends on how long the low or high intensity farming 
has been in existence but the past agricultural practice were 
not examined in our research.

Some indicators had a significant influence on the mean 
relative yield of plots. Simple linear regressions led to sig-
nificant models with pH, OC, and topography indicators 
(R2 = 0.42, 0.25, 0.37). We did not find any reason for non-
linear analysis. Therefore, the organic carbon content might 
be an important soil parameter to predict yields. The rela-
tionship between soil organic matter indicators and yields 
was well known but described by non-linear regression 
using the modified Mitscherlich equation (Csathó, 2003a, b). 
Separate examinations of the indicators can result in false 
conclusions. However, having all of the simple indicators 
as well as the selected non-correlated indicators, multi-
variate stepwise regressions for mean relative yield and 
yield variability were all unsuccessful, namely the multi-
ple regression models could not be reasonably interpreted. 
A dimension reduction by principal component analysis 
was necessary.

According to the eigenvalues greater than 1, the PCA 
yielded three principal components explaining a total of 
84.926% of the variance for the entire set of variables 
(Table 3). Principal component 1 (PC1) was identified as 
salinisation, sodification, and sodium-enhanced clay trans-
location at a specific altitude due to the high loadings of 
the following items: AL-Na, EC, clay, clay + silt, pH, and 
topography. The first factor accounted for 52.502% of the 
total variance and discriminated well the plots on Solonetz 
soils from the ones on Chernozems. PC2 was labelled as 
pH, accumulation of calcium carbonates, and humification 
due to the high loadings of the following variables: pH, 
CaCO3, and OC. Namely, this factor expressed the remain-
ing basic capacity caused by the CaCO3 content and could 
discriminate the Calcic Gleysols with low soil organic mat-
ter from the Calcic Chernozems. The variance explained 
by the second factor was 19.253%. PC3 was identified 
as available nutrient content due to the high loadings of 
AL-P2O5 and AL-K2O. This factor accounted for 13.169% 
of the total variance. The communalities of the variables 
included were high (> 0.82) with the exception of one 
variable (Hargitai-N) having a small amount of variance 
(40.2%) in common with the other variables in the analy-
sis. Therefore, we identified three artificial variables which 
are independent of one another (ie they are uncorrelated) 
and characterize the soil capacities on an ascending scale 
because of the linear scoring of indicators.

Factor analyses, especially PCA, are widely considered 
as suitable methods to process even highly correlated edap- 
hic variables (Shukla et al., 2004a; Govaerts et al., 2006; 
Yao et al., 2013). A Varimax rotation enhances the inter-
pretability of the uncorrelated components. The derived 
factors are designated as soil quality indices or complex 
indicators. Although these PCA factors do not explain the 

Fig. 3. The mean relative yield and standard deviation of produc-
tivity classes (PDI: Pálfai drought index).

T a b l e  3.  Results of principal component analysis

Principal components PC1 PC2 PC3

Eigenvalues 5.776 2.118 1.449

% of variance 52.502 19.253 13.169

Cumulated % of total 
variance

52.502 71.758 84.926

Factor loadings

pH 0.733 0.591 0.275

EC 0.971 -0.074 -0.021

AL-Na 0.970 0.014 -0.062

CaCO3 0.036 -0.907 -0.146

Silt + clay (<0.02 mm) 0.850 0.323 0.187

Clay (<0.002 mm) 0.949 0.122 0.184

AL-P2O5 -0.119 0.121 -0.926

AL-K2O -0.043 0.001 -0.927

Hargitai-N 0.428 -0.345 0.315

OC 0.533 0.759 -0.017

Topography 0.726 0.370 0.395

Model diagnostics: KMO = 0.69, c2 (55) = 378.132; p < 0.001, 
boldface loadings were considered as highly weighted in PCs. 
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total variance of the entire set of variables, PCA is consi- 
dered as a reasonable dimension reduction method and the 
PC factors can be well interpreted.

The linear multiple PCR for the mean relative yield of 
all years ( )pYR  selected all the three PC factors into the 
linear model, so the explained variance was as R2 = 0.49 
(p < 0.01) (Table 4). The F test resulted in a significant 
model and the coefficients of the PC1, PC2, and PC3 factors 
together with the constant were all significant. The PCR 
for the mean relative yield of droughty years ( )pYR  select-
ed the PC1 and PC3 factors into the linear model, which 
presented a significant model. The explained variance was 
as R2 = 0.30 (p < 0.05). The PCR for the mean relative 
yield of humid years ( )pYR  selected the PC2 and PC3 into 
the linear model, so the explained variance was R2 = 0.40 
(p < 0.01). The PCR for yield variability (CV(RYp)) selected 
the PC1 and PC2 factors into the linear model. The ex- 
plained variance was as R2 = 0.41 (p < 0.01). In droughty 
years, the sodification, salinization, soil texture, and nutrient 

contents determined the yields in our study. In humid years, 
the lower topographical position, the soil organic matter, 
and nutrient contents were the main limiting factors. 

This multivariate approach is considered new in 
Hungary. In comparison with similar research in other 
regions, Shukla et al. (2004b) applied the same framework 
and reported that the grain yield (R2 = 0.19, p < 0.02) and 
biomass yield (R2 = 0.36, p < 0.003) were linearly correlated 
with four PCs derived. Mallarino et al. (1999) derived three 
common factors using factors analysis based on the cova- 
riance matrix of indicators. Their importance in explain-
ing the yield variability differed greatly among cornfields, 
R2 were between 0.01 (p < 0.254) and 0.67 (p < 0.001).

CONCLUSIONS

1. The study demonstrated that the impact of soil pro- 
perties on variability of grain yields depended on the weath-
er over the years and the topographical position as well. 
In droughty years, the sodification, salinization, soil tex- 
ture, and nutrient contents determined the yields, whereas 

T a b l e  4.  The results of the nonlinear principal component regression models: the estimated parameter and the regression diagnostics 
(F value of the model, Student t values of the parameters, and the explained variance R2)

Dependent variable Estimated parameters t (df = 26) F R2

pYR  droughty years

constant 0.66 0.02***

5.36* 0.30
PC1 0.40 2.38*

PC2 excluded from the model

PC3 0.38 2.25*

pYR  humid years

constant 0.64 0.02***

8.47** 0.40
PC1 excluded from the model

PC2 0.52 3.34**

PC3 0.37 2.40*

RYp all years

constant 0.64 34.30***

7.61** 0.49
PC1 0.36 2.45*

PC2 0.45 3.04**

PC3 0.40 2.75*

CV(RYp) all years

constant 24.88 10.46***

8.74** 0.41
PC1 -0.45 -2.94**

PC2 -0.46 -2.98**

PC3 excluded from the model

Significant at: *p < 0.05, ** p < 0.01, ***p < 0.001.
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in humid years the lower topographical position, the soil 
organic matter, and nutrient contents were the main limit-
ing factors in our study.

2. Multivariate statistical methods are necessary to 
reveal the relationship between pedological parameters and 
crop yield in regard to weather conditions and topographi-
cal position. All pedological indicators that characterize the 
soil productivity function and major soil forming processes 
need to be included into the multivariate statistical analysis.

3. The advantages of using principal component regres-
sion analysis were as follows: (I) principal component 
analysis operates well with highly correlated variables and 
performs a reasonable dimension reduction; (II) principal 
components are uncorrelated and can express the interac-
tions of soil properties. Although the principal components 
do not explain the total variance of the entire set of varia- 
bles (which may be a disadvantage), they can explain the 
yields better than the simple indicators. Consequently, the 
variables can effectively explain the yield and the variabi- 
lity together with other variables as linear combinations.
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