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A b s t r a c t. Soil temperature just beneath the soil surface 
is highly dynamic and has a direct impact on plant seed germi-
nation and is probably the most distinct and recognisable factor 
governing emergence. Autoregressive integrated moving average 
as a stochastic model was developed to predict the weekly soil 
temperature anomalies at 10 cm depth, one of the most impor-
tant soil parameters. The weekly soil temperature anomalies 
for the periods of January1986-December 2011 and January 
2012-December 2013 were taken into consideration to construct 
and test autoregressive integrated moving average models. The 
proposed model autoregressive integrated moving average (2,1,1) 
had a minimum value of Akaike information criterion and its esti-
mated coefficients were different from zero at 5% significance 
level. The prediction of the weekly soil temperature anomalies 
during the test period using this proposed model indicated a high 
correlation coefficient between the observed and predicted data – 
that was 0.99 for lead time 1 week. Linear trend analysis indicated 
that the soil temperature anomalies warmed up significantly by 
1.8°C during the period of 1986-2011. 

K e y w o r d s: soil temperature anomalies time series, 
ARIMA model, prediction

INTRODUCTION

Temporal and spatial distribution of soil temperature re- 
lative to the growth response of both desirable plant species 
and weedy competitors are among the most important criti-
cal microclimate seedbed factors determining the success 
of seeding efforts (Roundy and Call, 1988). Microclimatic 
requirements for seedling establishment are much more 
restrictive than the conditions necessary for persistence of ma- 
ture perennial vegetation. The system requirements for esta- 
blishment of a plant community cannot be predicted 
without characterisation of the temporal and spatial varia- 

bility in microclimatic conditions in the field for vegetated 
or bare-soil conditions (Flerchinger and Hardegree, 2004). 
Computer simulation permits continuous monitoring of the 
temperature regime of the seedbed and characterisation of 
historical and potential future patterns of seedbed micro- 
climate (Hardegree et al., 2003). Also, a model tested for 
its capability to adequately predict soil temperature could 
be particularly useful in order to test global warming sce-
nario (Houle et al., 2002) and effects on some variables 
such as nitrogen transformation and thermal and biological 
degradation (Schütt et al., 2014; Subke and Bahn, 2010; 
Toosi et al., 2014).

Computer science and statistics have improved model- 
ling approaches for discovering patterns found in tempera-
ture time series data. Much effort has been devoted over 
the past several decades to develop time series models 
and to improve the accuracy of their predictions. Since 
the selection of the ‘best-fitting model’ does not necessa- 
rily imply ‘best forecasting performance’, the choice of 
the forecasting technique depends on a variety of factors, 
such as the objective in producing forecasts, the degree of 
accuracy required, and the properties of the given time-series 
(Chatfield, 2013). One of the most important and widely 
used time series model is the autoregressive integrated 
moving average (ARIMA) model (Shahwan and Odening, 
2007). This modelling approach is particularly useful 
when little knowledge is available on the underlying data 
generating process or when there is no satisfactory expla- 
natory model that relates the prediction variable to other 
explanatory variables (Zhang, 2003). The popularity of the 
ARIMA model is due to its statistical properties as well 
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as the well-known Box-Jenkins methodology (Box and 
Jenkins, 1976) in the model-building process. In addition, 
various exponential smoothing models can be implemented 
by ARIMA models (McKenzie, 1984). ARIMA models 
have been widely used for air quality (Diaz-Robles et al., 
2008), water quality (Ömer Faruk, 2010), runoff coeffi-
cients (Pektaş and Kerem Cigizoglu, 2013), solar irradiance 
and surface air temperature (Kärner, 2009), soil salt and 
water content (Aljoumani et al., 2012; Zou et al., 2010), 
soil dryness index (Li et al., 2003), soil heat flux (Kumar 
et al., 2009) and global near-surface mean temperature 
(Romilly, 2005).

Soil temperature immediately beneath the soil surface 
is highly dynamic and has a direct impact on plant seed 
germination and, probably, is the most distinct and recog-
nisable factor governing emergence (Dorado et al., 2009; 
Harvey and Forcella, 1993). Also, soil microorganisms are 
more active in the upper than in the deeper soil layers. For 
example, Persson and Wirén (1995) found that, on average, 
78% of the net N mineralisation occurred above the depth 
of 10 cm and 22% occurred in the 10-50 cm layer in forest 
soil. To the best of our knowledge, no research has been 
done on applying the ARIMA model for studying temporal 
variability of soil temperature. Furthermore, the high abili-
ty of ARIMA model in recognising the patterns of temporal 
variations and its abovementioned accurate predictions 
motivated us to develop such a model for describing the 
temporal variability of long-ranged soil temperature data 
at 10 cm depth.

MATERIAL AND METHODS

Daily soil temperature data at 10 cm depth were ob- 
tained from the meteorological station at the Agricultural 
Research Station of Shiraz University, Bajgah, for a long 
time period of 28 years from 1 January 1986 to 31 December 
2013. The latitude, longitude and elevation of this station 
which is located in the south of Iran are 29° 44’55’’ N, 52° 
34’ 20’’ E and 1810 m a.s.l., respectively. 

In the present paper, a model from the ARIMA family 
was fitted to the daily data series of soil temperature using 
a time step of more than one day. The longer time step leads 
to better fitting conditions because the soil temperature data 
series are, with varying intensity, non-stationary in terms 
of the self-similarity parameter. The latter is determined by 
means of the structure function. For this topic readers are 
referred to the detailed description by Monin et al. (1976) 
and Kärner (2009). Therefore, the daily time series soil tem-
perature data were first averaged to obtain the weekly data. 
The average of the first and second seven days of January 
1986, respectively, was considered as the first and second 
weekly data. This moving average with length of seven 
days was continued up to the last day of 1986. This process 
was performed separately for each year and then the weekly 
time series data of soil temperature were provided. In this 

manner, each year contains 52 weeks. Therefore, the whole 
time series contains 1 456=52×28 weeks. Figure 1 shows 
the time series plot of the weekly soil temperature (ST), 
indicating seasonal variations with period of 52 weeks. To 
eliminate seasonal variations, the weekly soil temperature 
anomalies were then computed with respect to weekly 
average for the whole studied period (1986-2013). Figure 2 
shows the time series plot of the weekly soil temperature 
anomalies (STA) for the whole studied period. This time 
series was divided into two periods consisting of the first 
week of January 1986 to the last week of December 2011 
(1 352 weeks), and from the first week of January 2012 to 
the last week of December 2013 (104 weeks). While the 
first period was used for constructing the ARIMA models, 
the later one was applied for model verification.

In an autoregressive integrated moving average model 
(ARIMA), the future value of a variable is assumed to be 
a linear function of several past observations and random 
errors. The linear function is based on three parametric lin-
ear components: autoregressive (AR), integration (I), and 
moving average (MA) method (Box and Jenkins, 1976). 
Box and Jenkins (1976) popularized ARIMA models as 

Fig. 1. Time series plot of weekly soil temperature at 10 cm depth 
for the whole period (1 January 1986 to 31 December 2013) at 
Bajgah Agricultural Experimental Station, Shiraz, Iran.

Fig. 2. Anomalies time series plot of the series in Fig. 1 and trend 
line for the period of 1986-2011.
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(p, d, q), where p and q are the orders for non-seasonal 
AR and MA, respectively. The non-seasonal differencing 
parameter that shows how many differencing steps were 
used for making the series stationary is shown by d. The 
general format of the ARIMA model is:

,)()( tqt
d

p wBxB θφ =∇  (1)

where: xt is a time series and wt is the white noise random 
variable. The ordinary autoregressive and moving average 
components are, respectively, represented by:
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21

p
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The ordinary difference component is defined by ∇d=(1-B)d, 
where B is the backshift operator defined by Bd xt = xt-d. 

The ARIMA modelling approach involves three iter- 
ative steps of model identification, parameter estimation 
and diagnostic checking. Identification of the general form 
of a model includes two stages:

–– if it is necessary, appropriate differencing of the series 
is performed to satisfy the stationary and normality 
assumptions; 

–– the temporal correlation structure of the transformed 
data is identified by examining its autocorrelation func-
tion (ACF) and partial autocorrelation function (partial 
ACF) (Mishra and Desai, 2005). 
The ACF is a useful statistical tool that determines 

whether earlier values in the series have some relation 
to later values. Partial ACF is the amount of correlation 
between a variable and a lag of itself that is not explained 
by correlations at all low order lags. Box and Jenkins 
(1976) proposed to use the ACF and partial ACF of sample 
data as the basic tools to identify the order of the ARIMA 
model. Considering the ACF and partial ACF graphs of soil 
temperature series, different ARIMA models are identified 
for model selection. The model that gives the minimum 
Akaike Information Criterion, AIC (Eq. (4)), and follows 
the assumptions of residual independence is selected as the 
best model. Shapiro-Wilk (1965) and Ljung-Box (1978) 
test were used to check the normality and independence of 
residuals, respectively. The AIC equation is defined as:

AIC = n(ln ((2πRSS)/n)+1)+2m ,                   (4)

where: m = (p + q) is the number of terms estimated in the 
model (sum of autoregressive and moving average orders), 
n is the number of sample size and RSS denotes the sum 
of squared residuals (Ömer Faruk, 2010). In the identifi-
cation step, data transformation is often required to make 
the time series stationary. Stationarity is a necessary con-
dition in building an ARIMA model used for forecasting. 
A stationary time series is characterized by constant mean 

and autocorrelation structure over time. When the observed 
time series presents a trend and heteroscedasticity, diffe- 
rencing and power transformation are applied to the data 
to remove the trend and to stabilize the variance before 
fitting an ARIMA model. Once a tentative model is identi-
fied, estimation of the model parameters is straightforward 
(Khashei and Bijari, 2011).

After the functions of the ARIMA model were specified, 
the parameters of the functions must be estimated. Once 
an appropriate model is chosen and its parameters are esti-
mated, the methodology (Box and Jenkins, 1976) requires 
examining the residuals of the model to verify that the 
model is adequate for the series. Several tests are employed 
for the diagnostic check to determine whether the residuals 
of the selected ARIMA models from the ACF and partial 
ACF graphs are independent, homoscedastic and normally 
distributed. If the homoscedasticity and normality assump-
tions are not satisfied, the observations are transformed by 
a Box-Cox (1964) transformation (Wei, 1994). For a good 
forecasting model, the residuals left over after fitting the 
model must satisfy the requirements of a white noise pro-
cess. In order to determine whether soil temperature time 
series are independent, the residual autocorrelation func-
tion (RACF) of the series was studied. There are several 
useful tests related to RACF for the independence of resid-
uals. The first one is the correlograms drawn by plotting 
the residual ACF against lag number. If the ARIMA model 
is correct, the estimated autocorrelations of the residuals 
are uncorrelated and distributed approximately normally 
about zero. The second one is the Ljung-Box-Pierce (Box 
and Pierce, 1970; Ljung and Box, 1978) statistics. In order 
to test the null hypothesis (that a current set of autocor-
relations is white noise), test statistics were calculated for 
different total numbers of successive lagged autocorrela-
tions using the Box-Pierce statistics (Q(r) test)) to test the 
adequacy of the model. Q(r) values were compared to a cri- 
tical test value of 2 distribution with respect to their 
degrees of freedom at the probability level of 5% (El-Din 
and Smith, 2002).

To verify the forecasting capability of the developed 
model, the weekly soil temperature anomalies were pre-
dicted from the first week of January 2012 to December 
2013 as an independent test. For instance, when the lag 
time is one week, the soil temperature anomaly for the first 
week of January 2013 was firstly predicted, that for the sec-
ond week of January 2012 was then predicted when the lag 
time is two weeks. After this, a new ARIMA model with the 
period of January 1986 to the first week of January 2012 
was constructed to predict:

–– the soil temperature anomaly for the second week of 
January 2012, when the lag time is one week, and

–– the soil temperature anomaly for the third week of 
January 2012, when the lag time is two weeks. 
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This procedure was sequentially repeated 104 times to 
predict the soil temperature anomalies from the first week 
of January 2012 to the last week of December 2013 for dif-
ferent lag times. Then, the observed and predicted data with 
the upper and lower bounds of the 95% confidence interval 
of the predicted values were plotted.

RESULTS AND DISCUSSION

The weekly time series plot of the soil temperature ano- 
malies for the period from January 1986 to December 2011 
which was used for constructing ARIMA models (Fig. 2). 
A simple linear regression analysis was applied over this 
time series to test the linear trend as follows:

stt =β1 t + β0 + wt t = 1,2,… ,1352 ,                     (5)

where stt is the observed soil temperature, wt is the white 
noise random variable, and t is the time location, starting 
from the first week of January 1986. The estimated slope 
β1 was 0.00135oC/week, with standard error of 0.000126oC/
week, resulting in t-value of 0.00135/0.000126=10.7 which 
is significantly greater than the quantile of t-distribution 
with  a = 0.01  and 1 351 degree of freedom (t0.005 (1351) = 
2.32)). The soil temperature at 10 cm depth has, therefore, 
increased by about 1.8oC for the period of 1986-2011. The 
estimated linear trend is also shown in Fig. 2. 

The autocorrelation function of the surface soil tem-
perature anomalies time series for the period of 1986-2011 
shows Fig. 3. The results indicate that the autocorrelation 
coefficient slowly decreases as lag time increases, and the 
first fifteen autocorrelation coefficients are statistically 
significant (p<0.05). Both the linear trend and the ACF 
indicate that there is a significant warming trend in the sur-
face soil temperature anomalies time series of the studied 
area. Based on the obtained upward significant trend in soil 
temperature anomalies, it is expected that this parameter of 
soil will be increasing in the future in this region. The prob-
able warming will lead to more evapotranspiration and to 
an intensification of the world water shortage crisis.

Increases in soil temperatures have been directly 
observed from long term measurements or inferred from 
borehole temperature profiles in high latitude or altitude 
regions of North America (Quinton et al., 2011), Asia (Wu 
et al., 2012) and Europe (Hipp et al., 2012).

Due to this significant positive trend, a first order dif-
ferencing procedure (d = 1) was performed to de-trend the 
weekly time series data. The differenced time series plot of 
surface soil temperature and its fitted linear regression indi-
cate that there is no linear trend in differenced time series 
data (Fig. 4). The ACF analysis of the differenced series 
showed significant correlations at lags 1 and 2 (Fig. 5a), 
suggesting that the moving average model has two or less 
parameters (ie q2). Since the plot of the partial autocor-
relation function exhibited significant correlations for the 
lags fewer than 8, an AR model of order 8 was suggested 

Fig. 4. Time series and trend line plots of the differenced weekly 
surface soil temperature anomalies time series for the period of 
1986-2011.
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(Fig. 5b). After order identification, Eqs (2) and (3) were 
used to estimate the parameter values. The significance va- 
lues of these parameters were eventually examined using 
the t-test. Accordingly, Table 1 indicates the characteristics 
of the candidate ARIMA models to predict soil temperature 
anomalies.  

Among the candidate models, the following ARIMA 
(2,1,1) model with the minimum value of AIC (4 410.9) 
and the minimum value of error variance ( 2ˆwσ =1.52) was 
the most appropriate model for the prediction of surface 
soil temperature.

(1-0.6580.0274B-0.06790.0274B
2) ∇1  stt =(1-0.9890.0038 B)wt . (6)

The values given in the parentheses are the standard 
errors of estimated parameters. All of the presented coef-
ficients were statistically significant. For example, the 
t-value of 0.0679/0.0274=2.47 is significantly greater than 
the quantile of t-distribution with a = 0.01 and 1 348 degree 
of freedom (t0.005 (1 384) = 2.32)).

To the best of our knowledge, no research has been car-
ried out on applying the ARIMA models for the prediction 
of soil temperature. But, a series of studies have been done 
by Raghuwanshi and Wallender (1996, 1997, 1998, 1999) 
to develop a seasonal irrigation model. The aforementioned 
investigators built up an autoregressive moving average 
ARIMA model of (1,0,1) order by applying the ACF and 
partial ACF of the standardized grass reference crop evapo-
transpiration (ET0). They used the same model to predict 
both irrigation schedules and optimum furrow irrigation 

designs (inflow rate and cut-off time) and found that pre-
dictions could be properly explained by the underlying 
stochastic process. Aljoumani et al. (2012) also developed 
an ARIMA model of (2,1,0) order to predict the soil water 
content at the depth of interest by measuring water content 
in a single depth in order to precisely determine the next 
irrigation time and its effect on soil water content at the 
depth of interest. Besides, Romilly (2005) also used anom-
aly time series to eliminate the seasonal effect in global 
monthly near-surface mean temperature data. The afore-
mentioned study used time series techniques to model the 
properties of a global mean temperature dataset in order to 
develop a parsimonious forecasting model for managerial 
decision-making over the short term horizon. A forecasting 
evaluation showed that the chosen model performed well 
and the estimation results confirm the findings of a number 
of previous studies. 

The time series plot of the standardized residuals does 
not show any increasing or decreasing pattern (data not 
shown). The ACF of these residuals indicates no apparent 
departure from the model assumptions, wt in Eq. (6) being 
a white noise random variable. The Ljung-Box-Pierce 
test statistic (Box and Pierce, 1970; Ljung and Box 1978) 
was significant at time lags 1 through 25. The significant 
p-value of the Kolmogorov-Smirnov normality test sug-
gests that the residuals are normally distributed. In general, 
according to this information, the proposed ARIMA model 
has been adequately fitted.

T a b l e  1. Characteristics of the ARIMA models which were candidates to predict soil temperature anomalies

Model type Model structure Coefficients Standard error AIC
2ˆwσ

ARIMA (1, 1, 1)
AR1 0.7040 0.0204

4 415.0 1.53
MA1 -0.9879 0.0041

ARIMA (2, 1, 1)

AR1 0.6583 0.0274

4 410.9 1.52AR2 0.0679 0.0274

MA1 -0.9892 0.0038

ARIMA (3, 1, 3)

AR1 0.2713 0.0214

4 415.0 1.52

AR2 -0.6768 0.0148

AR3 0.6931 0.0217

MA1 -0.5604 0.0058

MA2 0.5733 0.0075

MA3 -0.9837 0.0085
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The observed and predicted soil temperature anoma-
lies for the period of January 2012 to December 2013 with 
lag one are shown in Fig. 6. The results indicate that the 
applied ARIMA model has recognized the fluctuations of 
soil temperature accurately. The Pearson correlation coeffi-
cient (R) between observed and predicted soil temperature 
anomalies for lead times up to 3 weeks were, respective-
ly, 0.99, 0.65 and 0.53, all statistically significant at 1% 
significance level. The corresponding root mean square 
errors were 0.39, 1.03 and 1.18oC. To the best of our know- 
ledge, no research has been done on applying the ARIMA 
model for predicting soil temperature, but other studies 
have reported that ARIMA models are highly efficient in 
short-term forecasting different soil parameters such as soil 
salt and water content (Aljoumani et al., 2012; Zou et al., 
2010), soil heat flux (Kumar et al., 2009) and soil dryness 
index (Li et al., 2003).

CONCLUSIONS

1. An autoregressive integrated moving average 
(ARIMA) model, characterized as ARIMA (2,1,1) was 
developed to predict weekly values of the surface soil 
temperature anomalies. This developed model tends to 
accurately predict soil temperature anomalies.

2. The soil temperature anomalies time series were 
non-stationary.

3. The anomalies time series were differenced to con-
duct analysis in frequency domain to obtain the parameters 
of the ARMA models for the purposes of using the ARIMA 
model to predict surface soil temperature.

4. There is a high correlation coefficient between the 
observed and predicted surface soil temperature anomalies; 
that was 0.99 for lead time 1 week.

5. The indicated significant warming trend (1.8ºC for 
the period 1986-2011) in soil temperature could improve 
our understanding of warming and its biological and bio-
chemical consequences.
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