
A b s t r a c t. In the present study, the application of a back

propagation) neural network for the prediction of moisture content

of barberry fruit (berberis vulgaris) during drying was investiga-

ted. The important parameters, namely, pretreatment (no pretreat-

ment, heat shocking, olive oil + K2CO3), air drying temperature

(60, 70 and 80°C), air drying velocity (0.3, 0.5 and 1 m s-1) and time

(s) were considered as the input parameters, and moisture content

as the output of the artificial neural network. Experimental data

obtained from a thin-layer drying process were used for training

and testing the network. Several criteria such as training algorithm,

learning rate, momentum coefficient, number of hidden layers,

number of neurons in each hidden layer, and activation function

were given to improve the performance of the artificial neural net-

work. The best training algorithm was Levenberg-Marquard with the

least mean square error value. Optimum values of learning rate and

momentum for the artificial neural network with gradient descent

momentum training algorithm were set at 0.5 and 0.7, respectively.

The optimal topologies were 4-20-1 and 4-25-5-1 with mean

square error values of 0.00318 and 0.001 with logsig activation

functions. Also, with tansig activation function, the optimal topo-

logies were 4-20-1 and 4-15-15-1 with the mean square error

values of 0.00293 and 0.00130. There was no significant difference

between the two activation functions in optimal topologies. There

was good correlation between the predicted and experimental

values in optimal models.

K e y w o r d s: thin-layer, artificial neural network, moisture

content, training algorithm

INTRODUCTION

Barberry fruit (Berberis vulgaris) is known as a medici-

nal and ornamental plant in the world (Aghbashlo et al.,

2008). Medicinal use of barberry dates back more than 2 500

years, and it has been used in Indian folk medicine to treat

diarrhoea, reduce fever, improve appetite, relieve upset sto-

mach, and promote vigour as well as sense of well-being.

Iran is the largest producer of barberry in the world (Fathol-

lahzadeh et al., 2008). Dehydration of agricultural products

in the tray dryer involves a high energy consumption mainly

because the operation control and maintenance are made

heuristically. Too high moisture content leads to microorga-

nism growth and low quality, while too low moisture content

may lead to excessive energy consumption (Lertworasirikul

and Tipsuwan, 2008). To achieve an increase in the process

efficiency and to reduce the energy consumption, the pro-

cess parameters have to be optimized (Aghbashlo et al., 2009;

Akpinar et al., 2003; Aviara et al., 2010). A convenient way

of getting to this target is to numerically simulate the total

system behaviour and to predict the main parameter evo-

lution for different operational conditions (Margaris and

Ghiaus, 2006). The main obstacle for extensive analysis of

the dehydration process by numerical simulation is the lack

of knowledge on the thermophysical properties of most of

the agricultural products. On the other hand, the results

from numerical simulation have to be validated by means of

experimental investigation. Mathematical correlations usually

give the most accurate results only in specific experiments

and they are not valid in other conditions (Movagharnejad et

al., 2007). Besides, mathematical models simulate the drying

process based on some assumptions while neglecting the

effect of some interdependent variables, which results in de-

creased prediction capability (Tripathy and Kumar, 2009).

Neural networks have many attractive properties for the mo-

delling of complex process. Several studies demonstrated

the significance and usefulness of the artificial neural net-

work (ANN) in modelling the drying process (Behroozi
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Khazaee, 2003; Farkas et al., 2000a, 2000b; Sablani and

Rahman, 2003; Satish and Pedy Setty, 2005), food

temperature prediction during solar drying (Tripathy and

Kumar, 2009), predicting moisture content of agricul- tural

products (Topuz, 2009), moisture content and water ac-

tivity prediction of semi-finished cassava crackers (Lertwo-

rasirikul and Tipsuwan, 2008), moisture content modelling

of thin-layer corn during the drying process (Trela et al.,

1997), prediction of physical property changes of carrot

during drying (Kerdpiboon et al., 2006). Also, a neural net-

work has been used to model an industrial drying process

and thin-layer drying kinetics (Assidjo et al., 2008; Khazaei

and Daneshmandi, 2007) and for the modelling of tomato

drying (Movagharnejad et al., 2007).

The aim of this study was to verify that an ANN model

can be used to predict the moisture content of barberry fruit

during the drying process under different drying conditions.

In addition, a method to obtain representative learning data

and several criteria to provide an optimal training of the

ANN are proposed. The paper is organized as follows:

1. the experimental procedures are described,

2. the ANN was first trained using a database of data sets

obtained experimentally,

3. was the optimization of parameters, establishing some

criteria to optimize the training process and the learning

database were nade (the optimization was made by con-

sidering the type of the learning algorithm, different va-

lues of momentum coefficient and learning rate, the

number of hidden layers and the number of neurons in

each of them, and the type of activation functions),

4. the accuracy of the various proposed prediction models

was tested trough the comparison of predicted values

with experimental data using linear regression analysis.

MATERIALS AND METHODS

The moisture content of fresh berries was determined by

drying in an oven at 105°C for 4 h until the mass did not

change between two weighing intervals, performed in tripli-

cate (Aghbashlo et al., 2008). Chemicals used for dipping

the samples were of technical grade. To expedite drying by

breaking the waxy layer of barberry skin, thermal shocking

of the berries was carried out by immersing them in hot

water, followed by cooling with cold water. To increase the

water permeability of the skin, the berries were also dipped

in a suspension of commercial olive oil and K2CO3. The so-

lution of the desired concentration of K2CO3 was prepared

in distilled water and heated to 50°C, on a hot plate with

magnetic stirring. Olive oil was then added to this solution

which was kept under continuous agitation during dipping

of berries. The test treatments were as follows:

– no pretreatment;

– E1: dipped in hot-water at 85°C for 60 s followed by

rinsing with cold water at 10°C immediately;

– E2: dipped in emulsion of 3% olive oil and 6% K2CO3 at

50°C for 2 min.

The drying experiments were performed using a labora-

tory-scale cross-flow hot-air dryer available at the Agricul-

tural Engineering Department of Tarbiat Modares Univer-

sity, Tehran, Iran. The dryer consisted of a tray, an air flow

system, an air drying heating section and the main drying

chamber. The dryer was equipped with an automatic tem-

perature controller (± 0.1°C), an online weight data recorder

using precision balance (0.01 g, A&D Model-Japan), a load

cell and an online data logger employing a computer pro-

gram that recorded the weight loss of berries at 2 min inter-

vals. The experiments were carried out at hot air temperatu-

res of 60, 70 and 80°C. At each drying temperature three

velocity values were tested: 0.3, 0.5 and 1 m s
-1

. For quantitati-

ve evaluation of the pretreatment effect, an experiment with

untreated barberries was also included. To achieve a steady-

state thermal condition, the dryer was set to work for about

half an hour prior to the experiments. In each drying experi-

ment, about 10 g barberries were placed on the tray of the

drying chamber in a thin-layer formation. To ensure storage

stability, the barberries were dried to a final moisture content

below 18 % (w/w). The experiments were repeated three

times and the average of the moisture ratio at each time point

was used for drawing the drying curves. The moisture ratio

(MR) was calculated using the following equation:

MR
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-

-
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where: Mo, M, and Me are initial moisture, moisture at time

(t), and equilibrium moisture content, respectively.

The ANN model development generally involves the

use of experimental data for the training of the network,

evaluation of various configurations leading to the selection

of an optimal configuration, and its validation with a data set

different from those used in the training. The back propaga-

tion (BP) algorithm was implemented using the Matlab

R2009a software. In this study, the available data set was

partitioned into three parts, 70% for training, 20% for test

and 10% corresponding to the validation of the model

(Erenturk and Erenturk, 2007). The network had three

layers; input, hidden and output. The numbers of neurons in

the input layer and the output layer were equal to the number

of input and output parameters, respectively. The input

layers had four neurons with the values of the pretreatment,

drying air temperature (°C), drying air velocity (m s
-1

) and

time (s). The output layer had one neuron with the value of

moisture content (Fig. 1). Using experimental data obtained

in the thin-layer dryer, an optimized ANN model was

developed to predict the outlet moisture content of the
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barberry fruits. Each input unit of input layer receives input

signal Xi and broadcasts this signal to all units in the hidden

layer. Each hidden unit Yj sums its weighted input signal and

applies its activation function to compute an output signal as

identified in the following function:

Y f W X bj act ij i j
i

= +å
æ

è
çç

ö

ø
÷÷

=1

, (2)

where: Wij is the weight of the connection from the ith input

to the jth hidden unit, bj is the weight of bias connection for

jth hidden unit. The output signal of the hidden unit Yj is sent

to all units in the output layer. Each output unit Ok sums its

weighted input signal and applies its activation function to

compute its output signal as identified in Eq. (3):
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where: Vjk is the weight of the connection from the jth

hidden unit to the kth output unit. The parameter of bias (b)

in Eqs (2) and (3), also called the threshold value, is per-

manently set to 1 in the hidden layer as well as in the output

layer, so that corresponding weight shifts the activation

function along the x axis. The activation functions used in

this study were tangent sigmoid and logistic sigmoid that are

defined respectively as (Demuth and Beale, 2003):

f x
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+
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These two activation functions were utilized in the

hidden layers and the linear activation function was prac-

ticed the in output layer. The BP training algorithm is an

iterative gradient descent algorithm, designed to minimize

the mean of square error (MSE) and mean absolute error

(MAE) which are averaged over all patterns and are cal-

culated as follows:
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where: Sip is the desired or actual output, Tip is the predicted

output for the pattern, n0 is the number of neurons in the

output layer, and np is the number of patterns.

During training, an ANN is the presented with the data

for thousands of times, which is referred to as epochs. After

each epoch the error between the ANN output and the desired

values is propagated backward to adjust the weight in a man-

ner mathematically guarantied to converge. Adjustment of

the weights ÄWij can be calculated as (Topuz, 2009):

( )D DWij
E

W
W s

ij
ij=- + -a

¶

¶
b 1 , (8)

where: a is the learning rate, b is the momentum coefficient

and s is the current step. Training is the act of continuously

adjusting the connection weights until they reach unique

values that allow the network to produce outputs that are

close enough to actual desired outputs. The accuracy of the de-

veloped model, therefore, depends on these weights. Once

optimum weights are reached, the weights and biased values

encode the network state of knowledge (Topuz, 2009).

Using experimental data obtained in the thin-layer dryer,

an optimized ANN model was developed to predict the outlet

moisture content of the barberry fruit. The basic back propa-

gation algorithm adjusts the weights in the steepest descent

direction (negative of the gradient) (Dayhoff, 1990).

One of the most important tasks in ANN model develop-

ment is to find the optimal network architecture. This net-

work architecture is to be selected out of several network con-

figurations. Comprising the combination of various model

parameters, namely, the value of momentum coefficient and

learning rate, the number of hidden layers, the number of

neurons in hidden layers, different activation functions and

the training algorithm. A list of different training algorithms

is summarised in Table 1.

RESULTS AND DISCUSSION

Initially the performance of the ANN was assessed with

different training algorithms. In order to obtain the best

results, each of the model parameters was varied, keeping

the other parameters constant to study the influence of

variable parameters. The ANN with randomly chosen tansig

activation function, one hidden layer and 20 neurons in the

hidden layer, was trained and the best training algorithm that
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Fig. 1. Scheme of the ANN used for predicting the moisture

content.



can make the ANN model most effective in the simulation of

experimental data was selected. The results of the error ana-

lysis showing the influence of different training algorithms

on prediction of the moisture content are presented in Fig. 2.

Among the different training algorithms the LM provided

the best results. CGF and OSS were also satisfactory.

In order to acquire the optimum performance of a neural

network, the rate of error convergence was checked by ad-

justing the learning rate and momentum coefficient. The

learning rate and momentum coefficient values affect the

ANN performance significantly (Khazaei and Danesh-

mandi, 2007). The number of neurons in the hidden layer

was 20. In this optimization, GDM algorithm was exploited,

that is due to a and b in this algorithm are constant during

training. On the other hand, these parameters in this training

algorithm are time independent. In order to illustrate how the

ANN was optimized, some of the results obtained during

training are given in Table 2. The greater the learning rate,

the more the weight values were changed. Too low a learn-

ing rate made the network learn very slowly. Too high a learn-

ing rate made the weights and objective function diverge.

From these results, the learning rate of 0.5 led to the best

convergence and the lowest model error. Similar results

were reached with the momentum coefficient of 0.7. As can

be shown, a small learning rate and large momentum were

desirable. Momentum allows a network to respond not only

to the local gradient, but also to recent trends in the error

surface. Totally, the optimal values of these parameters

should be reached by a trial and error method. The networks

were trained up to epochs where the level of error was
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Learning rate

a

Momentum

coefficient

b
MAE

0.2 0.4 0.276

0.2 0.4 0.215

0.2 0.4 0.541

0.5 0.7 0.394

0.5 0.7 0.257

0.5 0.7 0.682

0.8 0.5 0.457

0.8 0.5 0.282

0.8 0.5 0.597

T a b l e 2. Results of the ANN training with GDM training

algorithm and different values of a and b

Fig. 2. Results of the ANN model considering different training algorithms.

M
S

E

Acronym Algorithm

GD Gradient Descent

GDM Gradient Descent Momentum

GDX Variable Learning Rate Backpropagation

GDA Variable Learning Rate Backpropagation

LM Levenberg- Marquardt

RP Resilient Backpropagation

CGF Conjugate Gradient

BFG BFGS Quasi- Newton

OSS One- Step Secant

CGB Conjugate Gradient with Powell/Beale Restarts

SCG Scaled Conjugate Gradient

CGP Polak-Ribiére Conjugate Gradient

T a b l e  1. List of back propagation training algorithm



satisfactory and further cycles had no significant effect on its

reduction. In order to obtain the optimum number of hidden

layers and the number of neurons in each of them, at first the

ANN model was trained with one hidden layer and varying

number of neurons in this layer with logsig activation

function and LM training algorithm. Then the ANN was

trained with two hidden layers and different number of

neurons in each layer with the same training algorithm and

activation function. The minimum and maximum number of

neurons in hidden layers was 5 and 20, respectively, starting

with 5 neurons and then increasing the network size by

adding 5 neurons each time. The best topologies were 4-20-1

and 4-25-5-1 with MSE values of 0.00318 and 0.001,

respectively. The results are shown in Table 3. In the ANN

architecture with one hidden layer, the error with 5 neurons

was high; by increasing the number of the neurons this error

reduced, but when the number of neurons was 25 the error

increased again. Using too few neurons in the hidden layers

will result in something called under-fitting. Under-fitting

occurs when there are too few neurons in the hidden layers to

adequately detect the signals in a complicated data set. Too

many neurons in the hidden layers may result in over-fitting.

Over-fitting occurs when the neural network has so much

information processing capacity that the limited amount of

information contained in the training set is not enough to

train all of the neurons in the hidden layers. When the

network begins to over-fit the data, the error in validation set

will typically begin to increase (Assidjo et al., 2008). The

ANN with two hidden layers was trained and the error was

reduced in respect of one hidden layer architecture. These

networks, named shallow networks (Amiri Chayjan, 2006),

had better performance. Obviously, some compromise must

be reached between too many and too few neurons in the

hidden layers. In order to assess the performance of the

network with two different activation functions, the pre-

vious experiments were done with tansig activation function

again and the results were comprised (Fig. 3). The best topo-

logies with this activation function were 4-20-1 and 4-15-

15-1 with the MSE values of 0.00293 and 0.00130, respec-

tively (Table 3). Comparison between the two activation

functions indicates that except the topologies of 4-5-1,

4-5-15-1, 4-5-5-1 and 4-10-15-1, in other topologies the

influence of the transfer functions on the capability of the

ANN model made no significant difference. Finally, the pre-

diction capability of proposed models was further assessed

on the basis of regression line characterized by its correla-

tion coefficients (R), between predicted and experimental

values for test and validation data sets. The results are

presented in Table 4. As can be seen, the results predicted by

those topologies that have the least error were found to be

slightly closer to experimental data.
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Number

hidden layers

Number neurons

MSE1st

hidden layer
2nd

hidden layer

Logsig activation function

1 5 - 0.06380

1 10 - 0.00492

1 15 - 0.00422

1 20 - 0.00318

1 25 - 0.00385

1 5 5 0.02850

1 10 5 0.00401

2 15 5 0.01090

2 20 5 0.00246

2 25 5 0.00173

2 30 5 0.00874

2 25 5 0.00100

2 25 15 0.00147

Tansig activation function

1 5 - 0.00833

1 10 - 0.00545

1 15 - 0.00486

1 20 - 0.00293

1 25 - 0.00346

2 5 5 0.01050

2 10 5 0.00395

2 15 5 0.00273

2 20 5 0.00313

2 10 10 0.00317

2 15 10 0.00174

2 15 15 0.00130

2 15 20 0.00248

T a b l e 3. Results of the ANN training with LM training algorithm

and: logsig  and tansig activation functions
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Fig. 3. Performance of the ANN with two different activation

functions.



CONCLUSIONS

1. The ANN model was successful in predicting the

moisture content of barberry during thin-layer drying under

different drying conditions.

2. The best training algorithm with the least MSE value

in this problem was LM.

3. In training with GDM algorithm, the optimum values

of learning rate and momentum coefficient with the mini-

mum error were 0.5 and 0.7, respectively.

4. The optimum models from all the data sets with the

logsig activation function were 4-20-1 and 4-25-5-1 with

MSE values of 0.00318 and 0.001, respectively, and the op-

timum models with the tansig activation function were

4-20-1 and 4-15-15-1 with the MSE values of 0.00293 and

0.00130, respectively. The results show that in optimum to-

pologies there was no significant difference between the

performance of the ANN with tansig and logsig activation

functions.

5. The optimal models can predict the moisture content

with high values of R.

6. The application of artificial neural networks can be suc-

cessful for estimating the on-line states and for controlling

the drying process in industrial operations.
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